土木工程英语文献_范文大全

土木工程英语文献

【范文精选】土木工程英语文献

【范文大全】土木工程英语文献

【专家解析】土木工程英语文献

【优秀范文】土木工程英语文献

范文一:土木工程英语文献原文 投稿:潘馦馧

Civil engineering introduction papers

Abstract: the civil engineering is a huge discipline, but the main one is building, building whether in China or abroad, has a long history, long-term development process. The world is changing every day, but the building also along with the progress of science and development.

Mechanics findings, material of update, ever more scientific technology into the building.But before a room with a tile to cover the top of the house, now for comfort, different ideas, different scientific, promoted the development of civil engineering, making it more perfect.

[key words] : civil engineering; Architecture; Mechanics, Materials.

Civil engineering is build various projects collectively. It was meant to be and "military project" corresponding. In English the history of Civil Engineering, mechanical Engineering, electrical Engineering, chemical Engineering belong to to Engineering, because they all have MinYongXing. Later, as the project development of science and technology, mechanical, electrical, chemical has gradually formed independent

scientific, to Engineering became Civil Engineering of specialized nouns. So far, in English, to Engineering include water conservancy project, port Engineering, While in our country, water conservancy projects and port projects also become very close and civil engineering relatively

independent branch. Civil engineering construction of object, both refers to that built on the ground, underground water engineering facilities, also refers to applied materials equipment and conduct of the

investigation, design and construction, maintenance, repair and other professional technology.

Civil engineering is a kind of with people's food, clothing, shelter and transportation has close relation of the project. Among them with "live" relationship is directly. Because, to solve the "live" problem must build various types of buildings. To solve the "line, food and clothes" problem both direct side, but also a indirect side. "Line", must build railways, roads, Bridges, "Feed", must be well drilling water, water conservancy, farm irrigation, drainage water supply for the city, that is direct relation. Indirectly relationship is no matter what you do, manufacturing cars, ships, or spinning and weaving, clothing, or even production steel, launch satellites, conducting scientific research activities are inseparable from build various buildings, structures and build all kinds of project facilities.

Civil engineering with the progress of human society and development, yet has evolved into large-scale comprehensive discipline, it has out many branch, such as: architectural engineering, the railway engineering, road engineering, bridge engineering, special engineering structure, water

and wastewater engineering, port engineering, hydraulic engineering, environment engineering disciplines. [1]

Civil engineering as an important basic disciplines, and has its important attributes of: integrated, sociality, practicality, unity. Civil engineering for the development of national economy and the

improvement of people's life provides an important material and technical basis, for many industrial invigoration played a role in promoting, engineering construction is the formation of a fixed asset basic

production process, therefore, construction and real estate become in many countries and regions, economic powerhouses.

Construction project is housing planning, survey, design,

construction of the floorboard. Purpose is for human life and production provide places.

Houses will be like a man, it's like a man's life planning environment is responsible by the planners, Its layout and artistic processing, corresponding to the body shape looks and temperament, is responsible by the architect, Its structure is like a person's bones and life expectancy, the structural engineer is responsible, Its water, heating ventilation and electrical facilities such as the human organ and the nerve, is by the equipment engineer is responsible for. Also like nature intact shaped like people, in the city I district planning based on build houses, and is the construction unit, reconnaissance unit, design unit of various design engineers and construction units comprehensive coordination and cooperation process.

After all, but is structural stress body reaction force and the internal stress and how external force balance. Building to tackle, also must solve the problem is mechanical problems. We have to solve the problem of discipline called architectural mechanics. Architectural mechanics have can be divided into: statics, material mechanics and structural mechanics three mechanical system. Architectural mechanics is discussion and research building structure and component in load and other factors affecting the working condition of, also is the building of intensity, stiffness and stability. In load, bear load and load of structure and component can cause the surrounding objects in their function, and the object itself by the load effect and deformation, and there is the possibility of damage, but the structure itself has certain resistance to deformation and destruction of competence, and the bearing capacity of the structure size is and component of materials, cross section, and the structural properties of geometry size, working conditions and structure circumstance relevant. While these relationships can be improved by mechanics formula solved through calculation.

Building materials in building and has a pivotal role. Building material is with human society productivity and science and technology

improves gradually developed. In ancient times, the human lives, the line USES is the rocks and

Trees. The 4th century BC, 12 ~ has created a tile and brick, humans are only useful synthetic materials made of housing. The 17th century had cast iron and ShouTie later, until the eighteenth century had Portland cement, just make later reinforced concrete engineering get vigorous development. Now all sorts of high-strength structural materials, new decoration materials and waterproof material development, criterion and 20th century since mid organic polymer materials in civil engineering are closely related to the widely application. In all materials, the most main and most popular is steel, concrete, lumber, masonry. In recent years, by using two kinds of material advantage, will make them together, the combination of structure was developed. Now, architecture, engineering quality fit and unfit quality usually adopted materials quality,

performance and using reasonable or not have direct connection, in meet the same technical indicators and quality requirements, under the

precondition of choice of different material is different, use method of engineering cost has direct impact.

In construction process, building construction is and architectural mechanics, building materials also important links. Construction is to the mind of the designer, intention and idea into realistic process, from the ancient holeJuChao place to now skyscrapers, from rural to urban country road elevated road all need through "construction" means. A construction project, including many jobs such as dredging engineering, deep foundation pit bracing engineering, foundation engineering,

reinforced concrete structure engineering, structural lifting project, waterproofing, decorate projects, each type of project has its own rules, all need according to different construction object and construction environment conditions using relevant construction technology, in work-site.whenever while, need and the relevant hydropower and other equipment composition of a whole, each project between reasonable organizing and coordination, better play investment benefit. Civil engineering construction in the benefit, while also issued by the state in strict accordance with the relevant construction technology standard, thus further enhance China's construction level to ensure construction quality, reduce the cost for the project.

Reference:

[1] LuoFuWu editor. Civil engineering (professional). Introduction to wuhan. Wuhan university of technology press. 2007

[2] WangFuChuan, palace rice expensive editor. Construction

engineering materials. Beijing. Science and technology literature press. 2002

[3] jiang see whales, zhiming editor. Civil engineering introduction of higher education press. Beijing.. 1992

范文二:土木工程英文文献及翻译-英语论文 投稿:丁邷邸

基于Hoek–Brown 破坏准则洞穴和隧道坍塌机理的极限分析

M. Fraldi F. Guarracino

摘要

对隧道和天然洞穴的坍塌状况进行可靠的预测至今仍然是岩石力学最困难的任务之一。

通过参考Hoek–Brown破坏准则,利用塑性理论和变分法经典工具,可以得到一个准确的解决方法。所得到的公式很简单,并且跟经验方法和数值分析比较非常有用。本文还提出并且讨论了一些使用广泛的软件包的的范例。

1. 引言

洞穴顶部的坍塌与否是一个发生在隧道、天然洞穴和煤矿中涉及岩土工程的实际问题。

普遍认为,这个问题十分的复杂,岩石稳定性在很大程度上被原位岩石力学性能的不确定性和岩石表面存在的裂缝、破碎面所影响。因此,自从太沙基的几个理论被提出来进行安全度评估,由于它们的简单性,这些经验方法一直被广泛的使用。然而,得到的结果因人而异,并且它们的适用性很大程度上依赖于设计者的判断和专业技能。有限元分析,也经常采用来评估这类问题的安全度,但是在建模和结果验证上出现麻烦。因此,研究一个健全的、可以评估哪种岩石材料不会破碎并且垂直下落的力学手段会是极其有用的。一般说来,洞穴安全度分析对于执业工程师来说,是很有用的。

目前的工作从李普曼提出的经典方法上转移了,尽管该方法十分简单,并在多方法评估

中被广泛地使用了几十年。该文用Hoek–Brown破坏准则代替Mohr–Coulomb屈服准则,并且更重要的是,通过塑性理论结合变分法经典工具,可得到一种解决方法。事实上,自从基于李普曼方法的程序的缺点集中在,很难找到一个有用的坍塌荷载的下限值,人们开始致力于研究一种严谨的变分程序。该程序通过一种运动学手段,可以直接分析坍塌荷载的最小值。由于塑性上限理论和在考虑的结构的内部,这种运动学手段被认为可以解出这类亟待解决的问题的有效坍塌荷载。从本质上来说,这个方法被建议用来弥补理想的连续可塑性与为物理分离和开挖洞室顶部、天然洞穴材料的重力作用区域所做的实用设计之间的差别。这个程序的优点在于它的必要的计算极其简单,这些计算能给这些亟待解决的参数一个富有意义

的物理学的解释,并且也对后续三元计算分析提供了首次验证。另外,目前实用的大多数方法注重研究塑性变形的开始(强度比或者其他的塑性指标),而不是坍塌过程的分析。这很可能被误导,因为在弹性分析和有限元分析中,首先屈服的地方和实际的坍塌机理不相符合是经常发生的。在这个方面,尽管推荐的方法的基本假设被简单化,但是它对全部的坍塌机理

进行指导。

2. Hoek–Brown准则的选择

当前,Hoek–Brown准则由于它对硬岩的强大实用性而被广泛传播,由于没有合适的替

代方案,Hoek–Brown准则也应用于破碎岩体。Hoek–Brown准则最开始被研究是为了解决地下开挖工程中的参数问题。在1980年初,由于没有合适的方法似乎可以用来评估岩体强度,并且几乎所有的有关土体和岩体的公式和软件是根据莫尔—库仑准则写的,人们致力于研究一个能根据地质信息而缩放的无量纲方程。事实上,起初的Hoek–Brown方程既不是新的也不是唯一的,它是一个早在1993年就被用来描述混凝土失效的恒等方程。然而,Hoek和Brown的重要贡献是将方程和岩体的实际特性联系起来。在这些准则的发展过程中,Hoek–Brown准则很早就被认可了。为了有实用效果,这些准则需要的参数通过简单的野外地质观察就可得到。为了这个特定目的,一种将岩石分级的思想被讨论,自从Bieniawski

的岩体质量分级(RMR)方法在1974年首次出版,并且在岩石力学界受到了广泛的欢迎后,该想法决定用这个分级方法作为地质参数的基本工具。

最初的准则是为地下开挖工程的狭窄条件而特别研究的。在过去的二十年中,可以作为

这些原始关系的基础的资料,来自于巴布几内亚Bougain-ville 矿井的岩体样本实验,并且通过实验验证得到了有意义的确认。

必须指出,这个偏袒硬岩的准则是基于这样的一个假设,即岩体破坏是由众多节理面分

割成的单个岩块的滑移和旋转所决定的。从而认为完整岩体的破坏在整个破坏过程中不起作用,并且假定节理是没有规则的,不存在什么优先破裂面,所以可以认为岩体是各向同性的。由于这个原因,目前的研究表明,使用Hoek–Brown准则在极限分析程序中研究岩体性质是最好的办法。

3. 极限分析和变分逼近法

分析在岩块中隧道和天然洞穴顶部稳定性的基本思路在于确定可能从洞穴顶部坍塌的岩块的形状和尺寸(如图一所示)。和往常一样,这个问题将被视为平面问题,并且将会取整个洞穴横断面作参考。但为了使程序更容易被理解,取矩形洞室作为参考。一个解决不同形状的洞穴的方法,比如圆形洞穴,可以通过同样的方法得到,只不过需要更多的复杂的数学计算,这也将是进一步研究的方向。

原则上,解决方法可以通过Greenberg最小原则,同时参考研究材料彼此间相对移动的库仑型机理而得到。通过参考莫尔—库仑屈服准则和关联流动法则,一种库仑机理开始被设计出来研究多边形块体。然而,通过采纳Hoek–Brown准则,该准则很快就指出:坍塌岩块再也不需要是多边形的,并且坍塌区域的最有效的形状成为了一个未知的问题。

图一 坍塌块体示意

为了克服这个这个困难,本文提出了一个方法,借助于变积分并且假设坍塌岩块的形状可以通过欧拉方程结合最大塑性损耗原则计算得到。

在这个规定下,通过使外功比率和沿着机动许可速度场的能量的内部损耗的比率相等,可以得到坍塌岩体的有效形状。也就是说是满足速度限界、应变率与速度之间的兼容性。根

据Greenberg最小原则(也就是上限和极限分析的运动学理论),最小化待求问题的结果函数,可以得到有效的坍塌机理。事实上,所有需要的条件都得到了满足,即:①材料的行为是理想塑性的;②屈服面是凸的,通过关联流动法则中的屈服方程可以得到塑性变形比例; ③在坍塌开始发生的过程中,岩体的几何形状变化可以不考虑(看作刚塑体)。

必须指出,如果一方面,对于一些岩体力学的问题,非关联流动法则更加适合是正确的,那么另一方面,为了得到塑性的数学理论,关于极限领域的流体的变化必须通过分析详细说明。这个分析定理不适用于基于这类问题的Hoek–Brown准则,至少在现在的文献中是这样。此外通过非关联流动法则得到的边界是罕见的,而不是极限分析中的边界理论,并且它和时下的主流方法观点不一致。此外,在第6部分中提到的有限元分析表明:对这个被研究的问题来说,这个参数的不容易得到正确的结果。

因此,将Hoek–Brown变形准则画在莫尔σn—τ

向量n垂直于破坏面,

这里,A和B分别表示表征岩体特性的无量纲参数,σc和σt分别是破坏时的压应力和拉应力。

n 平面坐标系中,如图2所示,单位

图2 莫尔σn—τn 平面坐标系中的Hoek–Brown变形准则

系数A的简单的力学解释可使Hoek–Brown准则和莫尔—库仑准则相一致时而得到,即:

这里,υ是岩体的内摩擦角,c是岩体的粘聚力。

在标准材料(也就是遵从关联流动法则的材料)组成的结构中,通过假设塑性位势

Hoek–Brown屈服曲线一致,不失一般性,考虑τ

所以这个塑性应变率可以写成下面的形式:

n 为正的半平面,从而有: 和

这里λ是一个纯量参数。

由于当前的工作范围是研究重力场下岩体坍塌,人们主要关注可容许的竖向速度场u, 假设该速度沿Y轴的方向,如图1所示。方程y=f(x) 表示在x-y笛卡尔参考坐标系中的坍塌岩体曲线上的任何一个单元。

通过一个纯粹的几何关系的推理,并且参考图1,塑性应变率可以写成:

这里w是这个塑性分离区的厚度,一个点表示对时间和横坐标x的微分,即:

为了保证兼容性,在方程(4)和方程(5)中的塑性应变率的分量必须相等,从他们中的第二个方程可以得到:

所以,通过考虑这个结果,从第一个方程中可以得到法向应力的方程,该方程中包含Hoek–Brown力学参数和这个未知的分离曲线的导数f '(x),也就是:

在坍塌即将发生的时候,在破裂面上的内力的损耗密度Di可以用下式表达:

而破裂面每单位长度外荷载的功率We为:

ρ为岩体容重(如图3所示)。

图3 静态坍塌模式

借助Greenberg最小化原则,在整个可容许的分离曲线y=f(x)的函数定义域上,通过求总损耗的最小值可以得到有效的坍塌机理。认为落石关于Y轴对称,即将发生坍塌的总损耗可以算出来:

这里,dsf'(x)2dx是分离曲线f(x)上的单元长度,S是曲线f(x)总长的一半,L是曲线的水平投影长度,也就是洞穴宽度的一半。f(x),f’(x),x的表达式如下: 

将在积分区间[0,L]上求极值。这个问题是变分法的经典问题之一,也就是在规定的条件下,找到一个函数,y=f(x),使积分式(11)为一个常数。值得强调的是,塑性区的纯量参数λ和单元厚度w在计算过程中都会自然的减少。因此,不同于其他的方法,他们的方面不需要另外的假设。

总损耗的第一个变分方程可以写成下面的形式:

通过方程(12)可以得到

所以,利用方程(13),对眼前的问题使用Euler-Lagarange方程可以得到最清楚形式如下:

这里,

V代表所有可以容许的重力速度场的作用空间。

方程(15)是一个含有未知函数f(x)的复杂的非线性二阶微分方程。第一次积分的结果为:

并且方程(18)的再次积分可以得到分离曲线f(x)的最终解的形式:

这里,

h表示一个积分常量,它可能有特殊的几何意义,也就是坍塌岩块的最高尺寸。

将方程(18)和方程(19)代入方程(12)中,可以得到:

这里,

并且利用方程(11)、(21)和(22),可以得到总损耗的具体形式:

在这里,L还是不知道。然而,由于它的几何意义,L无疑和h有关系,也和其他的亟待解决的力学参数有关系。

事实上,L表示曲线f(x)和平面y=0的交点的值,令表达式(19)等于0并且考虑结果为正值,可以得到:

将这个结果代入方程(23),有:

从纯粹的数学角度考虑,利用方程(25),仅有一对值(L,h)满足条件:

表示了可能坍塌机制。然而,为了成为实际物理问题的答案,这些值必须满足方程(1)和方程(2)中的应力分量必须满足破裂面上的平衡方程。这些方程式在局部坐标系(n,s)中可以写成:

这里n和s分别表示曲线y=f(x)的法线和切线方向(如图3所示)。然而cotf'(x),

bbn,bs是体积力向量。 T

值得提醒的是,虽然方程(27)的第二个式子保证了沿曲线y=f(x)的切线方向的平衡,方程(27)的第一个式子保证了曲线y=f(x)的法线方向的平衡,但是在塑性区的厚度w方向,应力分布是未知的。

-sin的分然而,将方程(8)和(9)代入方程(1),并且利用单位法向量ncos,T

量,可以发现在曲线y=f(x)的切线方向的平衡总是满足的,即:

这里nnn。 xy

在另一方面,问题的对称性能很容易的用来满足在(x=0,y=-h)处的平衡条件。事实上,由于分离曲线y=f(x)被假定为关于Y轴对称,x=0的对称平面上的应力平衡要求在该面上不存在剪应力分量,也就是:

因此,利用应力分量之间的关系有:

并且考虑cotf'(x),所以有:

T

结合QB(1B)11(1B)/B,从方程(30)可以得到:

将方程(32)代入方程(25),可以导出:

所以可以得到:

因此,破裂面的表达式可写成:

从而可以用计算机计算单元长度坍塌块的总自重P,表示成:

范文三:土木工程文献及英文翻译 投稿:杨舙舚

受弯钢框架结点在变化轴向 荷载和侧向位移的作用下的周期性行为

摘要:这篇论文讨论的是在变化的轴向荷载和侧向位移的作用下,接受测试的四种受弯钢结点的周期性行为。梁的试样由变截面梁,翼缘以及纵向的加劲肋组成。受测试样加载轴向荷载和侧向位移用以模拟侧向荷载对组合梁抗弯系统的影响。实验结果表明试样在旋转角度超过0.03弧度后经历了从塑性到延性的变化。纵向加劲肋的存在帮助传递轴向荷载以及延缓腹板的局部弯曲。

1、引言

为了评价变截面梁(RBS)结点在轴向荷载和侧向位移下的结构性能,对四个全尺寸的样品进行了测试。这些测试打算评价为旧金山展览中心扩建设计的受弯结点在满足设计基本地震等级(DBE)和最大可能地震等级(MCE)下的性能。基于上述而做的对RBS受弯结点的研究指出RBS形式的结点能够获得超过0.03弧度的旋转角度。然而,有人对于这些结点在轴向和侧向荷载作用下的抗震性能质量提出了怀疑。

旧金山展览中心扩建工程是一个3层构造,并以钢受弯框架作为基本的侧向力抵抗系统。Fig.1是一幅三维透视图。建筑的总标高为展览厅屋顶的最高点,大致是35.36m(116ft)。展览厅天花板的高度是8.23m(27ft),层高为11.43m(37.5ft)。建筑物按照1997统一建筑规范设计。

框架系统由以下几部分组成:四个东西走向的受弯框架,每个电梯塔边各一个;四个南北走向的受弯框架,在每个楼梯和电梯井各一个的;整体分布在建筑物的东西两侧。考虑到层高的影响,提出了双梁抗弯框架系统的观念。

通过连接大梁, 受弯框架系统的抵抗荷载的行为转化为结构倾覆力矩部分地被梁系统的轴向压缩-拉伸分担,而不是仅仅通过梁的弯曲。结果,达到了一个刚性侧向荷载抵抗系统。竖向部分与梁以联结杆的形式连接。联结杆在结构中模拟偏心刚性构架并起到与其相同的作用。通常地联结杆都很短,并有很大的剪弯比。

在地震类荷载的作用下,CGMRFS梁的最终弯矩将考虑到可变轴向力的影响。梁中的轴向力是切向力连续积累的结果。

2.CGMRF的解析模型

非线性静力推出器模型是以典型的单间CGMRF模板为指导。图2展示了模型的尺寸规格和多个部分。翼缘板尺寸为28.5mm 254mm(1 1/8in 10in),腹板尺寸为9.5mm 476mm(3/8in 18 3/4in)。推进器模型中运用了SAP 2000计算机程序。框架的特色是全约束(FR)。FR受弯框架是一种由结点应变引起的挠度不超过侧向挠度的5%的框架。这个5%仅与梁-柱应变有关,而与柱底板区

应变引起的框架应变无关。模型通过屈服应力和匹配强度的期望值来运行。这些值各自为372Mpa(54ksi)和518Mpa(75ksi)。Fig.3显示了塑性铰的荷载-应变行为是通过建筑物地震恢复的NEHRP指标以广义曲线的形式逼近的。 y以Eps5.1和5.2为基底运算,如下:

P-M铰合线荷载-应变模型上的点C,D和E的取值如表5.4

y以0.01rad为幅度取值见表5.8。切变铰合线荷载-应变模型点C,D和E取值见表5.8。对于连续梁,假定两个模型点B和C之间的形变硬化比有3%的弹性比。

Fig.4定性的给出了侧向荷载下的CGMRF中的弯矩,切应力和正应力的分布。其中切应力和正应力对梁的影响要小于弯矩的作用,尽管他们必须在设计中加以考虑。内力分布图解见Fig.5,可见,弹性范围和非弹性范围的内力行为基本相同。内力的比值将随框架的屈服和内力的重分布的变化而变化。基本内力图见Fig.5,然而,仍然是一样的。

非静力推进器模型的运行通过柱子顶部的侧向位移的单调增加来实现,如Fig.5所示。在四个RBS同时屈服后,发生在腹板与翼缘端部的竖向的统一屈服将开始形成。这是框架的屈服中心,在柱子被固定后将在柱底部形成塑性铰。Fig.7给出了基本切应力偏移角。图中还给出了框架中非弹性活动的次序。对于一个弹性组成,推进器将有一个特有的很长的过渡(同时形成塑性铰)和一个很短的屈服平稳阶段。

塑性旋转能力, 被定义为:结点强度从开始递减到低于80%的总的塑性旋转角。这个定义不同于第9段(附录)AISC地震条款的描述。使用Eq源于RBS塑性旋转能力被定在0.037弧度。被 替代, 用来计算理论屈服强度与实际屈服强度的区别(标号是50钢)。

3.实践规划

如图6所示,实验布置是为了研究基于典型的CGMRF结构下的结点在动力学中的能量耗散。用图中所给的塑性位移,塑性转角,塑性偏移角,由几何结构,有如下:这里的δ和γ包括了弹性组合。上述近似值用于大型的非弹性梁的变形破坏。图6a表明用图6b所示的位移控制下的替代组合能够表示CGMRF结构中的典型梁的非弹性行为。图8所示,建立这个实验装置来发展图6a和图6b所示的机构学。轴心装置附以3个2438mm×1219mm×1219mm(8ft×4ft×4ft)RC块。并用24个32mm径的杆与实验室的地板固定。这种装置允许在每次测验后换实验样品。

根据实验布置的动力学要求,随着侧面的元件放置,轴向的元件,元件1和元件2,将钉到B和C中去, 如图8所示。因此,轴向元件提供的轴向力P可以被分解为相互正交的力的组合, 和 ,由于轴向力的倾斜角度不超过 ,因

此 近似等于P。然而,侧向力分量, ,引起了一个在梁柱交接处的附加弯矩。如果轴向元件压试样的话,那么将会加到侧向力中,若轴向是拉力,对于侧向元件来说则是个反向力。当轴向元件有个侧向位移 ,他们将在梁柱交接处引起一个附加弯矩,因此,梁柱交接处的弯矩等于: M=HL+P

其中H是侧向力,L是力臂,P是轴向力, 是侧向位移。

四个梁柱结点全尺寸实验做完了。拉伸试样检测的结果和构件尺寸见表2。所有柱和梁的钢筋为A572标号50钢( =344.5Mpa)。经测定的梁翼缘屈服应力值等于372Mpa(54ksi),整体的强度范围是从502Mpa(72.8ksi)到543Mpa(78.7ksi)。

表3列出了各个试样的全截面和RBS中间变截面处的塑性弯矩值(受拉应力下的数据)。

本文所指的试样专指试样1到4。被检试样细部图见图9到图12。在设计梁柱结点时用到了以下数据:

梁翼缘部分采用RBS结构。配备环形掏槽,如图11和图12所示。对于所有的试样,切除30%翼缘宽度。切除工作做的十分精细,并打磨光滑且与梁翼缘保持平行以尽量见效切口。

应用全焊接腹板结点。梁腹板与柱翼缘之间的结点采用全焊缝焊接(CJP)。所有CJP焊接严格依照AWS D1.1结构焊接规范。

采用双侧板加CJP形式连接梁翼缘的顶部和底部和柱表面到变截面开始处,如图11和图12。侧板尾部打磨光滑以便同RBS连接。侧板采用CJP形式与柱边缘相连接。侧板的作用是增加受弯单元的承受能力,平稳过渡是为了减少应力集中而导致的破裂。

两根纵向的加劲肋,95mm×35mm(3 3/4in ×1 3/8 in),以12.7mm的角焊缝焊接到腹板的中间高度,如图9和10。加劲肋采用CJP的形式焊接到柱的边缘。切除梁翼缘顶部和低部的坡口焊缝处的多余焊接部分。以便消除坡口焊接断口处可能产生的断裂。除去翼缘低部的衬垫板条。以便消除衬垫板条带来的断口效应并增加安全性。使用与梁翼缘厚度近似相同的连续板。所有试样板厚均为一英寸。由于RBS是受检试样最容易区分的特征,纵向的加劲肋在延缓局部弯曲和提高结点可靠性方面扮演着重要的角色。

4.荷载历史

试样被加以周期性交替的荷载,其末端的位移△y的增加如图4所示。梁的末端位移受伺服控制装置3和4的影响。当作用轴向力时,制动器1和2是活动的,以此用它的受力来模拟从连接处传到梁上的剪力。可变的轴向荷载在+0.5△y处增加到2800KN。在那以后,通过最大的侧向位移,这个荷载保持恒定。在试样被推回时,轴向力维持恒定直至0.5△y,然后减小到零,此时的试样通过中和

轴。根据本文第2部分有关轴向力受以上约束的论述,可以推断出以P=2800KN来研究RBS负载是合理的。测试将会继续,直至试样损坏,或者到实验预期的限制。

5. 实验结果

每个试样的滞后反应见图13和图16。这些图表显示了梁弯矩相对的的塑性旋度。梁的弯矩在RBS试样的中间测量,并通过取一个等价的梁端力乘以制动器侧向中心线到RBS中间的距离来计算。(试样1和2为1792mm,试样3和4为23972mm)。用来计算附加弯矩的等价侧向力由于P-△。旋转角是这样定义的,用制动器的侧向位移除以制动器侧向中心线到RBS中间的距离。塑性旋度计算如下:

其中V是剪力,K是弹性在范围内 的比。在测试期间的测量和观察表明,试样1和4的所有塑性旋度均在梁的内部发展。板的连接区域和柱子保持弹性,如设计预期的一样。

表5列出了每个试样在测试最后的塑性旋度。塑性旋度合格性能的目标级被定在±0.03rad,依AISC钢结构建筑抗震条例而定。所有试样均达到了合格的性能标准。所有试样均有良好的塑性变形和能量耗散。当负载周期为±1△y时,底部首先屈服,然后随着负载周期逐渐扩散增加。

5.1 试样1和2

试样1和2的变化见图13。在第7和第8个周期以及1△y,最初屈服发生在底缘处。对于所有的受测试的试样,最初的屈服均发生在这个部位,这是由试样底部的弯矩引起的。随着荷载作用的继续,屈服开始沿着RBS底缘传递。从

3.5△y开始,发生腹板弯曲并且相邻的底缘开始屈服。屈服开始沿RBS上边缘传递,一些次要的屈服传递到中间的加劲肋。在5△y开始,轴向压力增大到3115KN,一个剧烈的腹板的翘曲产生并伴随着局部弯曲。腹板和翼缘的局部弯曲随着荷载的累次 加载而逐渐明显。这里要说明的是,在滞后回线中,腹板和翼缘的局部弯曲并没附有重要的损坏。当作用到5.75△y时,在RBS的尾部和衬板连接处,试样1的底缘产生一个裂缝。随着荷载周期的增加到7△y时,裂缝迅速扩大并穿过了整个底缘。一旦底缘完全断裂,腹板将开始断裂。这个断裂首先在RBS的末端出现,然后沿剪切槽的净截面传播,通过加劲肋的中间并通过另一边的加劲肋的净截面。在实验中,试样1的最大作用弯矩是梁的塑性承载力的1.56倍。在作用到6.5△y时,试样2也在底缘处出现一个裂缝,是在RBS末端与翼板的交接处。随着荷载周期的增加,第15△y时,裂缝缓慢的发展穿过了底缘。试样2的测试到此结束,因为已经到了实验装置加载的极限。

加给试样1和试样2的最大荷载是890KN。从正的象限中看到的弯折是由于施加的变化的轴向拉力导致。力-位移曲线的正斜率证明了这个区域的负载容

量并没有减弱。然而,由于腹板和翼缘的局部弯曲的影响,负的区域的负载容量有轻微的削弱。试样1的照片如图14和图15。由图14可以看到,底缘处发生严重的局部弯曲,并可以看到与底缘相连的腹板部分。弯曲沿展到整个RBS的长度方向。RBS中形成塑性胶,并伴随着梁的腹板和翼缘的大规模的屈服。由图15可见,裂缝由RBS的连接传递到了侧面的翼板。在底缘的一个断裂导致了试样1的最终断裂。这个断裂导致梁几乎失去承载能力。图15还说明了试样1产成了0.05rad的塑性旋度,并且在柱子表面没有疲劳损伤。

5.2 试样3和试样4

试样3和试样4的变化曲线如图16。最初的屈服发生在荷载周期第7到第8周之间,底缘的重要屈服发生在1△y处。随着荷载周期的发展,屈服开始沿RBS的底缘传播。在1.5△y时,腹板弯曲发生并明显伴随着底缘的屈服。屈服开始沿着RBS的顶部传播,一些次要的屈服沿着加劲肋中部传播。在荷载周期到

3.5△y时,一个剧烈的腹板翘曲产生并伴随着翼缘的局部弯曲。腹板和翼缘的局部弯曲随着累次加载变得逐渐明显。当加载到4.5△y时,轴向荷载增大到3115KN,并导致屈服传播到中间横向加强构件。随着荷载周期的增加,腹板和翼缘的局部弯曲变得更加剧烈。对于2个试样,受实验装置的约束测试到此结束。在试样3和试样4中没有破坏产生。然而,在将试样3移动到实验室之外时,却发现在底缘与柱子的焊接处有一个微小的裂缝。加给试样3和试样4的最大荷载分别是890KN和912KN。试样的负载容量在实验后削弱了20%,这是由腹板和翼缘的局部弯曲引起的。这个慢性的恢复在大概塑性旋度产生0.015到0.02后开始。如图17所示,试样3在正的象限中的负载容量没有减弱(轴向的拉伸作用在梁上),由力-位移的包络图可见。图18是试样3的测试前的照片。图19是试样4在0.014的位移作用周期后的照片,显示了铰合区域的屈服和局部弯曲。梁的腹板的屈服沿着其整个深度方向。最强的屈服发生在腹板的底部,底缘和中间加劲肋之间。腹板的顶部也发生了屈服,虽然其剧烈程度不如底部。纵向的加劲肋也发生了屈服。柱子的连接板部分没有发生屈服。在接近柱子表面的梁的未经削弱的部分也没有显示发生屈服。最大位移是174mm,最大弯矩发生在RBS中部,为梁的塑性弯矩值的1.51倍。塑性铰的旋度达到了0.032rad(铰接点设置在距离柱子表面0.54d处,其中d是梁的长度)。

5.2.1 结点处的应变分布

试样3的外表面边缘的应变分布见图20和21。试样1、2、4的应变记录和分

状态呈现了相似的趋势。同样的,这些试样的屈服次序也同试样3的相似。在负周期时,离柱子51mm的顶部外表面处的应变低于0.2%。位于顶部同一位置的翼缘,仅在受压时屈服。图22和图23显示了沿着底缘外表面中心线的纵向应变,

其中取22是正向周期下的,图23是负向周期下的。从图23我们可以看出,在周期在-1.5△y以后,RBS上的应变比附近的柱子上的应变要大好几倍;这是由翼缘的局部弯曲造成的。底缘局部弯曲发生在整个板的平均应变达到形变硬化值时,板的变截面部分在纵向力下完全屈服,从而导致一个十分弯曲的波纹。

5.2.2 累计能量的消散

试样的累计能量消散见图24。累计能量消散是以封入区域的横向荷载的滞后回线之和表示的。能量消散在加载到12周以后在2.5△y处开始增加。对于飘移电平,点平的很小变化会带来很大的能量耗散。试样2比试样1消耗更多的能量,它是在RBS过度部分断裂的。然而,对于2个试样来说,在θ=0.04rad时,其周期是相似的。总的来说,在试样1和试样2中,负的周期下的能量消散比正的周期下能量消散大1.55倍。对于试样3和试样4来说,负的能量消散是正负平均水平的120%。在底缘RBS屈服后,屈服的组合现象,应变硬化,面内形变和面外形变,局部弯曲均很快发生。

6.结论

基于由实验而得的数据,以及应用于仪器的解析法,得出如下结论:

1、 对于所有的试样,塑性旋度均超出0.3%。

2、 RBS的塑性过程是平稳发展的。

强度承载能力取决于标定的屈服强度和FEMA-273梁-柱等式。

4、 底缘和腹板的塑性局部弯曲对其荷载承受能力没有重大的削弱。

5、 尽管翼缘的局部弯曲不使强度立即产生削弱,但是它确实导致腹板的局部弯曲。

6、 设置在梁的腹板中部的纵向加劲肋,能够帮助传递轴向力,还能延缓腹板的局部弯曲。然而,它却产生如此大的一个超过强度的比率,从而使焊接结点、板条区域以及柱子的承载能力在设计时大打折扣。

7、 在负载周期时,塑性旋度为0.015到0.02rad时将会产生一个逐渐的强度的减弱。在正向周期时也没有。

8、 轴想压缩荷载在小于0.0325Py时,对结点应变能力影响不大。

9、 CGMRFS技术与适当的设计以及详细的RBS连接,是一个可靠的抗震系统。 3、 试样超出抗弯强度的比率,试样1等于1.56,试样4等于1.51。抗弯

Cyclic behavior of steel moment frame

connections under varying axial load and lateral displacements Abstract: This paper discusses the cyclic behavior of four steel moment connections tested under variable axial load and lateral displacements. The beam specim- ens consisted of a reducedbeam section, wing plates and longitudinal stiffeners. The test specimens were subjected to varying axial forces and lateral displace- ments to simulate the effects on beams in a Coupled-Girder Moment-Resisting Framing system under lateral loading. The test results showed that the specim- ens responded in a ductile manner since the plastic rotations exceeded 0.03 rad without significant drop in the lateral capacity. The presence of the longitudin- al stiffener assisted in transferring the axial forces and delayed the formation of web local buckling.

1. Introduction

Aimed at evaluating the structural performance of reduced-beam section,(RBS) connections under alternated axial loading and lateral displacement, four full-scale specimens were tested. These tests were intended to assess the performance of the moment connection design for the Moscone Center Exp- ansion under the Design Basis Earthquake (DBE) and the Maximum Considered Earthquake (MCE). Previous research conducted on RBS moment connections [1,2] showed that connections with RBS profiles can achieve rotations in excess of 0.03 rad. However, doubts have been cast on the quality of the seismic performance of these connections under combined axial and lateral loading.

The Moscone Center Expansion is a three-story, 71,814 m2 (773,000 ft2) structure with steel moment frames as its primary lateral force-resisting system. A

three dimensional perspective illustration is shown in Fig. 1. The overall height of the building, at the highest point of the exhibition roof, is approxima- tely 35.36 m (116ft) above ground level. The ceiling height at the exhibition hall is 8.23 m (27 ft) , and the typical floor-to-floor height in the building is 11.43 m (37.5 ft). The building was designed as type I according to the requi- rements of the 1997 Uniform Building Code. The framing system consists of four moment frames in the East–West direct- ion, one on either side of the stair towers, and four frames in the North–South direction, one on either side of the stair and elevator cores in the east end and two at the west end of the structure [4]. Because of the story height, the con- cept of the Coupled-Girder Moment-Resisting Framing System (CGMRFS) was utilized.

By coupling the girders, the lateral load-resisting behavior of the moment framing system changes to one where structural overturning moments are resisted partially by an axial compression–tension couple across the girder system, rather than only by the individual flexural action of the girders. As a result, a stiffer lateral load resisting system is achieved. The vertical element that connects the girders is referred to as a coupling link. Coupling links are analogous to and serve the same structural role as link beams in eccentrically braced frames. Coupling links are generally quite short, having a large shear- to-moment ratio.

Under earthquake-type loading, the CGMRFS subjects its girders to wariab- ble axial forces in addition to their end moments. The axial forces in the Fig. 1. Moscone Center Expansion Project in San Francisco, CA girders result from the accumulated shear in the link. Fig 2. Analytical model of CGMRF. Nonlinear static pushover analysis was conducted on a typical one-bay model of the CGMRF. Fig. 2 shows the dimensions and the various sections of the model. The link flange plates were 28.5 mm 254 mm (1 1/8 in 10 in) and the web plate was 9.5 mm 476 mm (3 /8 in 18 3/4 in). The SAP 2000 computer program was utilized in the pushover analysis [5]. The frame was characterized as fully restrained(FR). FR moment frames are those frames for 1170which no more than 5% of the lateral deflections arise from connection deformation [6]. The 5% value refers only to deflection due to beam–column deformation and not to frame deflections that result from column panel zone deformation [6, 9].

The analysis was performed using an expected value of the yield stress and ultimate strength. These values were equal to 372 MPa (54 ksi) and 518 MPa (75 ksi), respectively. The plastic hinges’ load–deformation behavior was approximated by the generalized curve suggested by NEHRP Guidelines for the Seismic Rehabilitation of

Buildings [6] as shown in.

Fig. 3. △y was calcu- lated based on Eqs. (5.1) and (5.2) from [6], as follows: P–M hinge load–deformation model points C, D and E are based on Table 5.4 from

[6] for △y was taken as 0.01 rad per Note 3 in [6], Table 5.8. Shear hinge load- load–deformation model points C, D and E are based on Table 5.8 [6], Link Beam, Item a. A strain hardening slope between points B and C of 3% of the elastic slope was assumed for both models.

The following relationship was used to account for moment–axial load interaction [6]:

where MCE is the expected moment strength, ZRBS is the RBS plastic section modulus (in3), is the expected yield strength of the material (ksi), P is the axial force in the girder (kips) and is the expected axial yield force of the RBS, equal to (kips). The ultimate flexural capacities of the beam and the link of the model are shown in Table 1.

Fig. 4 shows qualitatively the distribution of the bending moment, shear force, and axial force in the CGMRF under lateral load. The shear and axial force in the beams are less significant to the response of the beams as compared with the bending moment, although they must be considered in design. The qualita- tive distribution of internal forces illustrated in Fig. 5 is fundamentally the same for both elastic and inelastic ranges of behavior. The specific values of the internal forces will change as elements of the frame yield and internal for- ces are redistributed. The basic patterns illustrated in Fig. 5, however, remain the same.

Inelastic static pushover analysis was carried out by applying monotonically,increasing lateral displacements, at the top of both columns, as shown in Fig. 6. After the four RBS have yielded simultaneously, a uniform yielding in the web and at the ends of the flanges of the vertical link will form. This is the yield mechanism for the frame , with plastic hinges also forming at the base of the columns if they are fixed. The base shear versus drift angle of the model is shown in Fig. 7 . The sequence of inelastic activity in the frame is shown on the figure. An elastic component, a long transition (consequence of the beam plastic hinges being formed simultaneously) and a narrow yield plateau characterize the pushover curve.

The plastic rotation capacity, qp, is defined as the total plastic rotation beyond which the connection strength starts to degrade below 80% [7]. This definition is different from that outlined in Section 9 (Appendix S) of the AISC Seismic Provisions

[8, 10]. Using Eq. (2) derived by Uang and Fan [7], an estimate of the RBS plastic

rotation capacity was found to be 0.037 rad:

Fyf was substituted for Ry•Fy [8], where Ry is used to account for the differ- ence between the nominal and the expected yield strengths (Grade 50 steel, Fy=345 MPa and Ry =1.1 are used).

3. Experimental program

The experimental set-up for studying the behavior of a connection was based on Fig. 6(a). Using the plastic displacement dp, plastic rotation gp, and plastic story drift angle qp shown in the figure, from geometry, it follows that:And: in which d and g include the elastic components. Approximations as above are used for large inelastic beam deformations. The diagram in Fig. 6(a) suggest that a sub assemblage with displacements controlled in the manner shown in Fig. 6(b) can represent the inelastic behavior of a typical beam in a CGMRF.

The test set-up shown in Fig. 8 was constructed to develop the mechanism shown in Fig. 6(a) and (b). The axial actuators were attached to three 2438 mm × 1219 mm × 1219 mm (8 ft × 4 ft × 4 ft) RC blocks. These blocks were tensioned to the laboratory floor by means of twenty-four 32 mm diameter dywidag rods. This arrangement permitted replacement of the specimen after each test.

Therefore, the force applied by the axial actuator, P, can be resolved into two or thogonal components, Paxial and Plateral. Since the inclination angle of the axial actuator does not exceed 3.0, therefore Paxial is approximately equal to P [4]. However, the lateral component, Plateral, causes an additional moment at the beam-to column joint. If the axial actuators compress the specimen, then the lateral components will be adding to the lateral actuator forces, while if the axial actuators pull the specimen, the Plateral will be an opposing force to the lateral actuators. When the axial actuators undergo

axial actuators undergo a lateral displacement _, they cause an additional moment at the beam-to-column joint (P-△ effect). Therefore, the moment at the beam-to column joint is equal to:

where H is the lateral forces, L is the arm, P is the axial force and _ is the lateral displacement.

Four full-scale experiments of beam column connections were conducted.

The member sizes and the results of tensile coupon tests are listed in Table 2

All of the columns and beams were of A572 Grade 50 steel (Fy 344.5 MPa). The actual measured beam flange yield stress value was equal to 372 MPa (54 ksi), while the ultimate strength ranged from 502 MPa (72.8 ksi) to 543 MPa (78.7 ksi).

Table 3 shows the values of the plastic moment for each specimen (based on measured tensile coupon data) at the full cross-section and at the reduced section at mid-length of the RBS cutout.

The specimens were designated as specimen 1 through specimen 4. Test specimens details are shown in Fig. 9 through Fig. 12. The following features were utilized in the design of the beam–column connection:

The use of RBS in beam flanges. A circular cutout was provided, as illustr- ated in Figs. 11 and 12. For all specimens, 30% of the beam flange width was removed. The cuts were made carefully, and then ground smooth in a direct- tion parallel to the beam flange to minimize notches.

Use of a fully welded web connection. The connection between the beam web and the column flange was made with a complete joint penetration groove weld (CJP). All CJP welds were performed according to AWS D1.1 Structural Welding Code.

Use of two side plates welded with CJP to exterior sides of top and bottom beam flan- ges, from the face of the column flange to the beginning of the RBS, as shown in Figs. 11 and 12. The end of the side plate was smoothed to meet the beginning of the RBS. The side plates were welded with CJP with the column flanges. The side plate was added to increase the flexural capacity at the joint location, while the smooth transition was to reduce the stress raisers, which may initiate fracture.

Two longitudinal stiffeners, 95 mm × 35 mm (3 3/4 in × 1 3/8 in), were welded with 12.7 mm (1/2 in) fillet weld at the middle height of the web as shown in Figs. 9 and 10. The stiffeners were welded with CJP to column flanges.

Removal of weld tabs at both the top and bottom beam flange groove welds. The weld tabs were removed to eliminate any potential notches introduced by the tabs or by weld discontinuities in the groove weld run out regions.

Use of continuity plates with a thickness approximately equal to the beam flange thickness. One-inch thick continuity plates were used for all specimens.

While the RBS is the most distinguishing feature of these test specimens, the longitudinal stiffener played an important role in delaying the formation of web local buckling and developing reliable connection performance4. Loading history

Specimens were tested by applying cycles of alternated load with tip displacement increments of _y as shown in Table 4. The tip displacement of the beam was imposed by servo-controlled actuators 3 and 4. When the axial force was to be

applied, actuators 1 and 2 were activated such that its force simulates the shear force in the link to be transferred to the beam. The variable axial force was increased up to 2800 kN (630 kip) at 0.5_y. After that, this lo- ad was maintained constant through the maximum lateral displacement.

maximum lateral displacement. As the specimen was pushed back the axial force remained constant until 0.5 y and then started to decrease to zero as the specimen passed through the neutral position [4]. According to the upper bound for beam axial force as discussed in Section 2 of this paper, it was concluded that P =2800 kN (630 kip) is appropriate to investigate this case in RBS loading. The tests were continued until failure of the specimen, or until limitations of the test set-up were reached.

5. Test results

The hysteretic response of each specimen is shown in Fig. 13 and Fig. 16. These plots show beam moment versus plastic rotation. The beam moment is measured at the middle of the RBS, and was computed by taking an equiva- lent beam-tip force multiplied by the distance between the centerline of the lateral actuator to the middle of the RBS (1792 mm for specimens 1 and 2, 3972 mm for specimens 3 and

4). The equivalent lateral force accounts for the additional moment due to P– △ effect. The rotation angle was defined as the lateral displacement of the actuator divided by the length between the centerline of the lateral actuator to the mid length of the RBS. The plastic rotation was computed as follows [4]:

where V is the shear force, Ke is the ratio of V/q in the elastic range. Measurements and observations made during the tests indicated that all of the plastic rotation in specimen 1 to specimen 4 was developed within the beam. The connection panel zone and the column remained elastic as intended by design.

5.1. Specimens 1 and 2

The responses of specimens 1 and 2 are shown in Fig. 13. Initial yielding occurred during cycles 7 and 8 at 1_y with yielding observed in the bottom flange. For all test specimens, initial yielding was observed at this location and attributed to the moment at the base of the specimen [4]. Progressing through the loading history, yielding started to propagate along the RBS bottom flange. During cycle 3.5_y initiation of web buckling was noted adjacent to the yielded bottom flange. Yielding started to propagate along the top flange of the RBS and some minor yielding along the middle stiffener. During the cycle of 5_y with the increased axial

compression load to 3115 KN (700 kips) a severe web buckle developed along with flange local buckling. The flange and the web local buckling became more pronounced with each successive loading cycle. It should be noted here that the bottom flange and web local buckling was not accompanied by a significant deterioration in the hysteresis loops.

A crack developed in specimen 1 bottom flange at the end of the RBS where it meets the side plate during the cycle 5.75_y. Upon progressing through the loading history, 7_y, the crack spread rapidly across the entire width of the bottom flange. Once the bottom flange was completely fractured, the web began to fracture. This fracture appeared to initiate at the end of the RBS,then propagated through the web net section of the shear tab, through the middle stiffener and the through the web net section on the other side of the stiffener. The maximum bending moment achieved on specimen 1 during theDuring the cycle 6.5 y, specimen 2 also showed a crack in the bottom flange at the end of the RBS where it meets the wing plate. Upon progressing thou- gh the loading history, 15 y, the crack spread slowly across the bottom flan- ge. Specimen 2 test was stopped at this point because the limitation of the test set-up was reached.

The maximum force applied to specimens 1 and 2 was 890 kN (200 kip). The kink that is seen in the positive quadrant is due to the application of the varying axial tension force. The load-carrying capacity in this zone did not deteriorate as evidenced with the positive slope of the force–displacement curve. However, the load-carrying capacity deteriorated slightly in the neg- ative zone due to the web and the flange local buckling.

Photographs of specimen 1 during the test are shown in Figs. 14 and 15. Severe local buckling occurred in the bottom flange and portion of the web next to the bottom flange as shown in Fig. 14. The length of this buckle extended over the entire length of the RBS. Plastic hinges developed in the RBS with extensive yielding occurring in the beam flanges as well as the web. Fig. 15 shows the crack that initiated along the transition of the RBS to the side wing plate. Ultimate fracture of specimen 1 was caused by a fracture in the bottom flange. This fracture resulted in almost total loss of the beam- carrying capacity. Specimen 1 developed 0.05 rad of plastic rotation and showed no sign of distress at the face of the column as shown in Fig. 15.

5.2. Specimens 3 and 4

The response of specimens 3 and 4 is shown in Fig. 16. Initial yielding occured during cycles 7 and 8 at 1_y with significant yielding observed in the bottom flange.

Progressing through the loading history, yielding started to propagate along the bottom flange on the RBS. During cycle 1.5_y initiation of web buckling was noted adjacent to the yielded bottom flange. Yielding started to propagate along the top flange of the RBS and some minor yielding along the middle stiffener. During the cycle of 3.5_y a severe web buckle developed along with flange local buckling. The flange and the web local buckling bec- ame more pronounced with each successive loading cycle.

During the cycle 4.5 y, the axial load was increased to 3115 KN (700 kips) causing yielding to propagate to middle transverse stiffener. Progressing through the loading history, the flange and the web local buckling became more severe. For both specimens, testing was stopped at this point due to limitations in the test set-up. No failures occurred in specimens 3 and 4. However, upon removing specimen 3 to outside the laboratory a hairline crack was observed at the CJP weld of the bottom flange to the column.

The maximum forces applied to specimens 3 and 4 were 890 kN (200 kip) and 912 kN (205 kip). The load-carrying capacity deteriorated by 20% at the end of the tests for negative cycles due to the web and the flange local buckling. This gradual reduction started after about 0.015 to 0.02 rad of plastic rotation. The load-carrying capacity during positive cycles (axial tension applied in the girder) did not deteriorate as evidenced with the slope of the force–displacement envelope for specimen 3 shown in Fig. 17.

A photograph of specimen 3 before testing is shown in Fig. 18. Fig. 19 is a

Fig. 16. Hysteretic behavior of specimens 3 and 4 in terms of moment at middle RBS versus beam plastic rotation.

photograph of specimen 4 taken after the application of 0.014 rad displacem- ent cycles, showing yielding and local buckling at the hinge region. The beam web yielded over its full depth. The most intense yielding was observed in the web bottom portion, between the bottom flange and the middle stiffener. The web top portion also showed yielding, although less severe than within the bottom portion. Yielding was observed in the longitudinal stiffener. No yiel- ding was observed in the web of the column in the joint panel zone. The un- reduced portion of the beam flanges near the face of the column did not show yielding either. The maximum displacement applied was 174 mm, and the maximum moment at the middle of the RBS was 1.51 times the plastic mom ent capacity of the beam. The plastic hinge rotation reached was about 0.032 rad (the hinge is located at a distance 0.54d from the column surface,where d is

the depth of the beam).

5.2.1. Strain distribution around connection

The strain distribution across the flanges–outer surface of specimen 3 is shown in Figs. 20 and 21. The readings and the distributions of the strains in specimens 1, 2 and 4 (not presented) showed a similar trend. Also the seque- nce of yielding in these specimens is similar to specimen 3.

The strain at 51 mm from the column in the top flange–outer surface remained below 0.2% during negative cycles. The top flange, at the same location, yielded in compression only.

The longitudinal strains along the centerline of the bottom–flange outer face are shown in Figs. 22 and 23 for positive and negative cycles, respectively. From Fig.23, it is found that the strain on the RBS becomes several times larg- er than that near the column after cycles at –1.5_y; this is responsible for the

flange local buckling. Bottom flange local buckling occurred when the average strain in the plate reached the strain-hardening value (esh _ 0.018) and the reduced-beam portion of the plate was fully yielded under longitudinal stresses and permitted the development of a full buckled wave.

5.2.2. Cumulative energy dissipated

The cumulative energy dissipated by the specimens is shown in Fig. 24. The cumulative energy dissipated was calculated as the sum of the areas enclosed the lateral load–lateral displacement hysteresis loops. Energy dissipation sta- rted to increase after cycle 12 at 2.5 y (Fig. 19). At large drift levels, energy dissipation augments significantly with small changes in drift. Specimen 2 dissipated more energy than specimen 1, which fractured at RBS transition. However, for both specimens the trend is similar up to cycles at q =0.04 rad

In general, the dissipated energy during negative cycles was 1.55 times bigger than that for positive cycles in specimens 1 and 2. For specimens 3 and 4 the dissipated energy during negative cycles was 120%, on the average, that of the positive cycles. The combined phenomena of yielding, strain hardening, in-plane and out- of-plane deformations, and local distortion all occurred soon after the bottom flange RBS yielded.

6. Conclusions

Based on the observations made during the tests, and on the analysis of the instrumentation, the following conclusions were developed:

1. The plastic rotation exceeded the 3% radians in all test specimens.

2. Plastification of RBS developed in a stable manner.

3. The overstrength ratios for the flexural strength of the test specimens were equal to

1.56 for specimen 1 and 1.51 for specimen 4. The flexural strength capacity was based on the nominal yield strength and on the FEMA-273 beam–column equation.

4. The plastic local buckling of the bottom flange and the web was not accompanied by a significant deterioration in the load-carrying capacity.

5. Although flange local buckling did not cause an immediate degradation of

strength, it did induce web local buckling.

6. The longitudinal stiffener added in the middle of the beam web assisted in transferring the axial forces and in delaying the formation of web local buckling. How ever, this has caused a much higher overstrength ratio, which had a significant impact on the capacity design of the welded joints, panel zone and the column.

7. A gradual strength reduction occurred after 0.015 to 0.02 rad of plastic rotation during negative cycles. No strength degradation was observed during positive cycles.

8. Compression axial load under 0.0325Py does not affect substantially the connection deformation capacity.

9. CGMRFS with properly designed and detailed RBS connections is a reliable system to resist earthquakes.

范文四:土木工程英文文献 投稿:阎月有

Reinforced Concrete

Plain concrete is formed from a hardened mixture of cement ,water ,fine aggregate, coarse aggregate (crushed stone or gravel),air, and often other admixtures. The plastic mix is placed and consolidated in the formwork, then cured to facilitate the acceleration of the chemical hydration reaction lf the cement/water mix, resulting in hardened concrete. The finished product has high compressive strength, and low resistance to tension, such that its tensile strength is approximately one tenth lf its compressive strength. Consequently, tensile and shear reinforcement in the tensile regions of sections has to be provided to compensate for the weak tension regions in the reinforced concrete element.

It is this deviation in the composition of a reinforces concrete section from the homogeneity of standard wood or steel sections that requires a modified approach to the basic principles of structural design. The two components of the heterogeneous reinforced concrete section are to be so arranged and proportioned that optimal use is made of the materials involved. This is possible because concrete can easily be given any desired shape by placing and compacting the wet mixture of the constituent ingredients are properly proportioned, the finished product becomes strong, durable, and, in combination with the reinforcing bars, adaptable for use as main members of any structural system.

The techniques necessary for placing concrete depend on the type of member to be cast: that is, whether it is a column, a bean, a wall, a slab, a foundation. a mass columns, or an extension of previously placed and hardened concrete. For beams, columns, and walls, the forms should be well oiled after cleaning them, and the reinforcement should be cleared of rust and other harmful materials. In foundations, the earth should be compacted and thoroughly moistened to about 6 in. in depth to avoid absorption of the moisture present in the wet concrete. Concrete should always be placed in horizontal layers which are compacted by means of high frequency power-driven vibrators of either the immersion or external type, as the case requires, unless it is placed by pumping. It must be kept in mind, however, that over vibration can be harmful since it could cause segregation of the aggregate and bleeding of the concrete.

Hydration of the cement takes place in the presence of moisture at temperatures above 50°F. It is necessary to maintain such a condition in order that the chemical hydration reaction can take place. If drying is too rapid, surface cracking takes place.

This would result in reduction of concrete strength due to cracking as well as the failure to attain full chemical hydration.

It is clear that a large number of parameters have to be dealt with in proportioning a reinforced concrete element, such as geometrical width, depth, area of reinforcement, steel strain, concrete strain, steel stress, and so on. Consequently, trial and adjustment is necessary in the choice of concrete sections, with assumptions based on conditions at site, availability of the constituent materials, particular demands of the owners, architectural and headroom requirements, the applicable codes, and environmental reinforced concrete is often a site-constructed composite, in contrast to the standard mill-fabricated beam and column sections in steel structures.

A trial section has to be chosen for each critical location in a structural system. The trial section has to be analyzed to determine if its nominal resisting strength is adequate to carry the applied factored load. Since more than one trial is often necessary to arrive at the required section, the first design input step generates into a series of trial-and-adjustment analyses.

The trial-and –adjustment procedures for the choice of a concrete section lead to the convergence of analysis and design. Hence every design is an analysis once a trial section is chosen. The availability of handbooks, charts, and personal computers and programs supports this approach as a more efficient, compact, and speedy instructional method compared with the traditional approach of treating the analysis of reinforced concrete separately from pure design.

钢筋混凝土

素混凝土是由水泥、水、细骨料、粗骨料(碎石或卵石)、空气,通常还有 其他外加剂等经过凝固硬化而成。将可塑的混凝土拌合物注入到模板内,并将其 捣实,然后进行养护,以加速水泥与水的水化反应,最后获得硬化的混凝土。其 最终制成品具有较高的抗压强度和较低的抗拉强度。其抗拉强度约为抗压强度的 十分之一。因此,截面的受拉区必须配置抗拉钢筋和抗剪钢筋以增加钢筋混凝土 构件中较弱的受拉区的强度

由于钢筋混凝土截面在均质性上与标准的木材或钢的截面存在着差异,因此, 需要对结构设计的基本原理进行修改。将钢筋混凝土这种非均质截面的两种组成 部分按一定比例适当布置,可以最好利用两种材料。这一要求是可以达到的。因 混凝土由配料搅拌成湿拌合物,经过振捣并凝固硬化,可以做成任何一种需要的 形状。如果拌制混凝土的各种材料配合比恰当,则混凝土制成品的强度较高,经 久耐用,配置钢筋后,可以作为任何结构体系的主要构件。

浇筑混凝土所需要的技术取决于即将浇筑的构件类型,诸如:柱、梁、墙、 板、基础,大体积混凝土水坝或者继续延长已浇筑完毕并且已经凝固的混凝土等 。对于梁、柱、墙等构件,当模板清理干净后应该其上涂油,钢筋表面的锈及其 他有害物质也应该被清除干净。浇筑基础前,应将坑底土夯实并用水浸湿6英寸, 以免土壤从新浇的混凝土中吸收水分。一般情况下。除使用混凝土泵浇筑外,混 凝土都应在水平方向分层浇筑,并使用插入式或表面式高频电动振捣器捣实。必 须记住过分的振捣将导致骨料离析和混凝土泌浆等现象,因而是有害的

水泥的水化作用发生在有水分存在,而且气温在50°F以上的条件下。为了保 证水泥的水化作用得以进行,必须具备上述条件。如果干燥过快则会出现表面裂 缝,这将有损于混凝土的强度,同时也会影响到水泥水化作用的充分进行。 设计钢筋混凝土构件时显然需要处理大量的参数,诸如宽度。、高度等几何 尺寸,配筋的面积,钢筋的应变和混凝土的应变,钢筋的应力等等。因此,在选 择混凝土截面时需要进行试算并作调整,根据施工现场条件、混凝土原材料的供 应情况、业主提出的特殊要求、对建筑和净空高度的要求、所用的设计规范以及 建筑物周围环境条件等最后确定截面。钢筋混凝土通常是现场浇筑的合成材料, 它与在工厂中制造的标准的钢结构梁、柱等不同,因此对于上面所提到的一系列 因素必须予以考虑。

对结构体系的各个部位均需选定试算截面并进行验算,以确实该截面的名义 强度是否足以承受所作用的计算荷载。由于经常需要进行多次验算,才能求出所 需的截面,因此设计时第一次采用的数值将导致一系列的试算与调整工作。 选择混凝土截面时,采用试算与调整过程可以使复核和设计结合在一起。因 此,当试算截面选定后,每次设计都是对截面进行复核。手册、图表和微型计算 机以及专用程序的使用,使这种设计方法更为简捷有效,而传统的方法则是把钢 筋混凝土的复核与单纯的设计分别进行处理。

范文五:土木工程英文文献及翻译 投稿:阎泤泥

Civil engineering

Civil engineering is a professional engineering discipline that deals with the design, construction, and maintenance of the physical and naturally built environment, including works like bridges, roads, canals, dams, and buildings.[1][2][3] Civil engineering is the oldest engineering discipline after military engineering,[4] and it was defined to distinguish non-military engineering from military engineering.[5] It is traditionally broken into several sub-disciplines including environmental engineering, geotechnical engineering, structural engineering, transportation engineering, municipal or urban engineering, water resources engineering, materials engineering, coastal engineering,[4] surveying, and construction engineering.[6] Civil engineering takes place on all levels: in the public sector from municipal through to national governments, and in the private sector from individual homeowners through to international companies.

History of the civil engineering profession

See also: History of structural engineering

Engineering has been an aspect of life since the beginnings of human existence. The earliest practices of Civil engineering may have commenced between 4000 and 2000 BC in Ancient Egypt and Mesopotamia (Ancient Iraq) when humans started to abandon a nomadic existence, thus causing a need for the construction of shelter. During this time, transportation became increasingly important leading to the development of the wheel and sailing.

Until modern times there was no clear distinction between civil engineering and architecture, and the term engineer and architect were mainly geographical variations referring to the same person, often used interchangeably.[7] The construction of Pyramids in Egypt (circa 2700-2500 BC) might be considered the first instances of large structure

constructions. Other ancient historic civil engineering constructions include the Parthenon by Iktinos in Ancient Greece (447-438 BC), the

Appian Way by Roman engineers (c. 312 BC), the Great Wall of China by General Meng T'ien under orders from Ch'in Emperor Shih Huang Ti (c. 220 BC)[6] and the stupas constructed in ancient Sri Lanka like the

Jetavanaramaya and the extensive irrigation works in Anuradhapura. The Romans developed civil structures throughout their empire, including especially aqueducts, insulae, harbours, bridges, dams and roads.

In the 18th century, the term civil engineering was coined to

incorporate all things civilian as opposed to military engineering.[5] The first self-proclaimed civil engineer was John Smeaton who constructed the Eddystone Lighthouse.[4][6] In 1771 Smeaton and some of his colleagues formed the Smeatonian Society of Civil Engineers, a group of leaders of the profession who met informally over dinner. Though there was evidence of some technical meetings, it was little more than a social society.

In 1818 the Institution of Civil Engineers was founded in London, and in 1820 the eminent engineer Thomas Telford became its first president. The institution received a Royal Charter in 1828, formally recognising civil engineering as a profession. Its charter defined civil engineering as:

the art of directing the great sources of power in nature for the use and convenience of man, as the means of production and of traffic in states, both for external and internal trade, as applied in the construction of roads, bridges, aqueducts, canals, river navigation and docks for internal intercourse and exchange, and in the construction of ports, harbours, moles, breakwaters and lighthouses, and in the art of navigation by artificial power for the purposes of commerce, and in the construction and application of machinery, and in the drainage of cities and towns.[8] The first private college to teach Civil Engineering in the United States was Norwich University founded in 1819 by Captain Alden Partridge.[9] The first degree in Civil Engineering in the United States was awarded by Rensselaer Polytechnic Institute in 1835.[10] The first such degree to be awarded to a woman was granted by Cornell University to Nora Stanton Blatch

in 1905.

History of civil engineering

Civil engineering is the application of physical and scientific principles, and its history is intricately linked to advances in

understanding of physics and mathematics throughout history. Because civil engineering is a wide ranging profession, including several

separate specialized sub-disciplines, its history is linked to knowledge of structures, materials science, geography, geology, soils, hydrology, environment, mechanics and other fields.

Throughout ancient and medieval history most architectural design and construction was carried out by artisans, such as stone masons and carpenters, rising to the role of master builder. Knowledge was retained in guilds and seldom supplanted by advances. Structures, roads and infrastructure that existed were repetitive, and increases in scale were incremental.[12]

One of the earliest examples of a scientific approach to physical and mathematical problems applicable to civil engineering is the work of Archimedes in the 3rd century BC, including Archimedes Principle, which underpins our understanding of buoyancy, and practical solutions such as Archimedes' screw. Brahmagupta, an Indian mathematician, used arithmetic in the 7th century AD, based on Hindu-Arabic numerals, for excavation (volume) computations.[13]

Civil engineers typically possess an academic degree with a major in civil engineering. The length of study for such a degree is usually three to five years and the completed degree is usually designated as a Bachelor of Engineering, though some universities designate the degree as a

Bachelor of Science. The degree generally includes units covering physics, mathematics, project management, design and specific topics in civil engineering. Initially such topics cover most, if not all, of the

sub-disciplines of civil engineering. Students then choose to specialize in one or more sub-disciplines towards the end of the degree.[14] While an

Undergraduate (BEng/BSc) Degree will normally provide successful

students with industry accredited qualification, some universities offer postgraduate engineering awards (MEng/MSc) which allow students to further specialize in their particular area of interest within engineering.[15]

In most countries, a Bachelor's degree in engineering represents the first step towards professional certification and the degree program itself is certified by a professional body. After completing a certified degree program the engineer must satisfy a range of requirements

(including work experience and exam requirements) before being certified. Once certified, the engineer is designated the title of Professional Engineer (in the United States, Canada and South Africa), Chartered Engineer (in most Commonwealth countries), Chartered Professional

Engineer (in Australia and New Zealand), or European Engineer (in much of the European Union). There are international engineering agreements between relevant professional bodies which are designed to allow engineers to practice across international borders.

The advantages of certification vary depending upon location. For example, in the United States and Canada "only a licensed engineer may prepare, sign and seal, and submit engineering plans and drawings to a public authority for approval, or seal engineering work for public and private clients.".[16] This requirement is enforced by state and provincial legislation such as Quebec's Engineers Act.[17] In other countries, no such legislation exists. In Australia, state licensing of engineers is limited to the state of Queensland. Practically all certifying bodies maintain a code of ethics that they expect all members to abide by or risk

expulsion.[18] In this way, these organizations play an important role in maintaining ethical standards for the profession. Even in jurisdictions where certification has little or no legal bearing on work, engineers are subject to contract law. In cases where an engineer's work fails he or she may be subject to the tort of negligence and, in extreme cases, the

charge of criminal negligence.[citation needed] An engineer's work must also comply with numerous other rules and regulations such as building codes and legislation pertaining to environmental law.

Careers

There is no one typical career path for civil engineers. Most people who graduate with civil engineering degrees start with jobs that require a low level of responsibility, and as the new engineers prove their competence, they are trusted with tasks that have larger consequences and require a higher level of responsibility. However, within each branch of civil engineering career path options vary. In some fields and firms, entry-level engineers are put to work primarily monitoring construction in the field, serving as the "eyes and ears" of senior design engineers; while in other areas, entry-level engineers perform the more routine tasks of analysis or design and interpretation. Experienced engineers generally do more complex analysis or design work, or management of more complex design projects, or management of other engineers, or into specialized consulting, including forensic engineering.

In general, civil engineering is concerned with the overall interface of human created fixed projects with the greater world. General civil engineers work closely with surveyors and specialized civil engineers to fit and serve fixed projects within their given site, community and terrain by designing grading, drainage, pavement, water supply, sewer service, electric and communications supply, and land divisions. General engineers spend much of their time visiting project sites, developing community consensus, and preparing construction plans. General civil engineering is also referred to as site engineering, a branch of civil engineering that primarily focuses on converting a tract of land from one usage to another. Civil engineers typically apply the principles of geotechnical engineering, structural engineering, environmental

engineering, transportation engineering and construction engineering to

residential, commercial, industrial and public works projects of all sizes and levels of construction

翻译:

土木工程

土木工程是一个专业的工程学科,包括设计,施工和维护与环境的改造,涉及了像桥梁,道路,河渠,堤坝和建筑物工程交易土木工程是最古老的军事工程后,工程学科,它被定义为区分军事工程非军事工程的学科它传统分解成若干子学科包括环境工程,岩土工程,结构工程,交通工程,市或城市工程,水资源工程,材料工程,海岸工程,勘测和施工工程等土木工程的范围涉及所有层次:从市政府到国家,从私人部门到国际公司。

历史土木工程专业

自从有了人类,土木工程便进入到了我们的日常生活。土木工程最早的追溯在公元前2000年至4000的古埃及和美索不达米亚(古伊拉克)。当人们开始放弃了游牧的存在,从而造成了对栖身地的需要和。在此期间,交通变得越来越重要,导致车轮和帆船的发展。

直到近代也不存在土木工程与建筑明显的区别,以及长期工程师和建筑师,主要指的是同一个人,通常可以互换使用。在埃及建造金字塔(公元前大约二七零零年至2500年)可能被视为第一个大型结构建筑实例。其他古代历史土木工程建设包括古代希腊帕台农神庙的Iktinos(447-438年),由罗马工程师亚壁古道(公元前312年)设计,再如由秦始皇下令,蒙恬将军负责建造的中国长城。以及古代斯里兰卡建造像Jetavanaramaya和广泛的灌溉佛塔工程阿努拉德普勒。罗马帝国在其整个开发土木结构,特别是包括渡槽,insulae,港口,桥梁,堤坝和道路。

在18世纪,这个词土木工程是杜撰把所有的东西平民而不是军事工程[5]第一个自称约翰Smeaton土木工程师是修建了埃迪斯通灯塔Smeaton 1771年和他的一些同事形成了土木Smeatonian学会,他们是在吃饭时结识的。虽然有一些技术会议的证据,它只不过是一个社会的社会。

1818年英国土木工程师学会成立于伦敦,并在1820年著名的工程师托马斯德福成为它的第一位会长。该机构在1828年获得皇家宪章,正式承认作为一个专业的土木工程。其章程规定民用建筑工程为:利用自然使人方便,作为生产和贩运国家都对外部和内部的贸易,如道路,桥梁,沟渠,运河的建设应用,手段,艺

术,内河航运和码头内部往来和交流,并在港口,码头,鼹鼠,防波堤和灯塔的建设,并在航行为商业目的人工力量的艺术,在建筑和机械的应用,而在城市和

城镇排水

第一个民办高校任教的美国诺威治大学土木工程是在1819年由船长奥尔登鹧鸪。[9]在土木工程中的美国第一学位是由伦斯勒理工学院于1835年颁发。第一个这样的荣誉,被美国康奈尔大学在1905年和诺拉斯坦顿布拉奇颁发给一名女子。

土木工程历史

土木工程是物理和科学原理的应用,它的历史是错综复杂的联系,在整个历史上的物理学和数学的认识的进步。由于土木工程是一个广泛的行业,包括几个独立的专门的子学科,它的历史与知识结构,材料科学,地理,地质,土壤,水文,环境,机械等领域。

纵观历史上最古老的和中世纪的建筑设计和施工进行了如石匠和木匠手艺,上升到建筑师的作用。知识被保留在很少的行会,进步甚微。构筑物,道路和基础设施的存在是重复的,并在规模上升的增量

对科学的态度,以物理和数学问题,适用于民用建筑工程的最早的例子之一是在公元前3世纪阿基米德的工作,包括阿基米德的原则,这巩固了我们的浮力的认识,如阿基米德螺旋切实可行的解决方案。 Brahmagupta,印度数学家,用在公元7世纪的算术,对印度教阿拉伯数字基础的开挖(体积)计算,

土木工程师通常拥有一个在民用工程专业学位。该研究为这种程度的长度通常是三至五年,并已完成的程度,通常作为指定的工学学士,虽然一些大学指定为理学学士的学位。程度一般包括单位覆盖物理,数学,项目管理,设计和土木工程的特定主题。最初等议题涵盖了大多数,如果不是全部,土木工程的子学科。学生然后选择一个或多个分学科专业走向结束的程度,而本科(学士/理学士)学位,通常会提供业界认可的资格成功的学生,一些大学提供研究生工程奖(孟/ MSC),使学生进一步在其感兴趣的特定领域内的工程专业

在大多数国家,学士学位的工程学士学位代表对专业认证的第一步和学位课程本身是由专业机构认证。在完成学位课程认证工程师认证之前,必须满足一定要求的范围(包括工作经验和考试要求)。一旦认证,工程师指定的专业工程师(在美国,加拿大和南非),英国特许工程师(在大多数英联邦国家),特许专业工程师(在澳大利亚和新西兰),或欧洲工程师称号(在多欧洲联盟)。有相关专

业机构之间的国际工程其目的是为了让工程师执业跨越国际边界的协定。

认证的优势在不同的位置而有所不同。例如,在美国和加拿大的“只有持牌工程师可能准备,签署和盖章,并提交工程计划和图纸到审批公权力,或密封的公共和私人客户工程工作。”这要求强制执行国家和省,如魁北克的工程师法在其他国家,没有这样的法律存在立法。在澳大利亚,国家的工程师授权仅限于昆士兰州。几乎所有的认证机构保持的道德规范,他们希望所有成员遵守这样,这些组织在维护职业道德标准的重要作用。即使在司法管辖区认证,很少或没有工作的法律关系,工程师受合同法。在这种情况下,一个工程师的工作失败,他或她可能受到过失侵权和在极端情况下,刑事过失负责。一个工程师的工作,还必须符合其他许多规则,如建筑法规规章和法律有关的环境法。

工作机会

没有一个典型的土木工程师的职业道路。大多数人谁土木工程学位与研究生开始与岗位需要的责任水平低,并作为新的工程师证明自己的能力,它们与任务有较大的影响,需要更高层次的责任信任。但是在每一个土木工程的职业道路的选择分支,因人而异。在一些领域和企业,入门级的工程师都投入到工作主要是在现场监督施工,而在另一些领域,入门级工程师进行分析比较常规任务或设计和解释。经验丰富的工程师一般都从事比较复杂的分析或设计工作,或更复杂的设计项目,或其他工程师的经营管理,或到专门的咨询服务,包括法医工程。 分学科

一般来说,土木工程关注的是人类创造的固定项目,更大的世界整体界面。一般民用工程师与专业土木工程师和测量师紧密合作,以适应和服务于他们的特定的网站,社区和地形通过设计分级,排水,路面,供水,污水处理服务,电力供应和通讯,土地部门的固定项目。一般工程师花了很多时间,参观项目现场,发展社会的共识,并准备建设规划。一般民用工程也被称为网站工程,土木工程的分支,主要转换从一个使用的土地系到另一个重点。土木工程师通常适用于岩土工程,结构工程,环境工程,交通工程和建设工程的原则,住宅,商业,工业及公共工程的各种规模和水平的建设项目。

范文六:土木工程文献+英文翻译 投稿:孔剫剬

框架结构研究进展

随着经济的发展、人们生活水平的提高、建筑要求的提升,混凝土组合结构在建筑行业得到了迅速发展。随着建筑造型和建筑功能要求日趋多样化,无论是工业建筑还是民用建筑,在结构设计中遇到的各种难题也日益增多,建筑结构设计是建设工程设计的重要环节,是保障建筑结构安全、实现建筑使用功能的灵魂。

采用框架结构形式,可形成内部大空间,能进行灵活的建筑平面布置,因此,框架结构体系在结构设计中应用甚广,对于框架结构的内力目前多采用计算机辅助软件来进行分析和计算,但是目前有的工程设计人员过分地依赖计算机的计算结果,而缺少独立分析问题、解决问题的能力,致使在一些图纸中出现不必要的问题,为以后事故的发生埋下隐患。每个设计者的经验不同,对规范的理解不同,所以在处理某个设计问题时,也就会采取不同的处理方法。

钢筋混凝土框架结构是由楼板、梁、柱及基础四种承重构件组成的。由主梁、柱与基础构成平面框架,各平面框架再由连续梁连接起来形成空间结构体系。钢筋混凝土框架结构是一种由梁、柱组成的超静定结构体系,在地震、风荷载等作用下需设计成延性结构,以便很好地吸收和耗散能量,保证结构具有足够的抵抗变形能力,确保结构安全。高层建筑采用框架结构体系时,框架梁应纵横向布置,形成双向抗侧力构件,使之具有较强的空间整体性,以承受任意方向的侧向力。框架结构具有建筑平面布置灵活、造型活泼等优点,可以形成较大的使用空间,易于满足多功能的使用要求。在结构受力性能方面,框架结构属于柔性结构,自振周期较长,地震反应较小,经过合理的结构设计,可以具有较好的延性性能。其缺点就是整体侧向刚度较小,在强烈地震作用下侧向变形较大,容易使填充墙产生裂缝,并引起建筑装修、玻璃幕墙等非结构构件的破坏。不仅地震中危及人身安全和财产损失,而且震后的修复工作和费用也很大。框架结构的承载力较低,它的受力特点类似于竖向悬臂剪切梁,楼层越高,水平位移越慢,高层框架在纵横两个方向都承受很大的水平力,这时,现浇楼面也作为梁共同工作的构件,装配整体式楼面的作用则不考虑,框架结构的墙体是填充墙,起围护和分隔作用。纵横向框架混合承重方案 纵横向框架混合承重方案是沿纵横两个方向上均布置有框架梁,作为楼盖的主梁,楼面荷载由纵,横向框架梁共同承担.它具有较好的整体工作性能。不同等级混凝土邻接面的留设在钢筋混凝土结构中,高层建筑框架结构的梁柱节点比较复杂,由于荷载组合及内力计算的结果,要求同一层的竖向结构(柱、墙)混凝土强度等级高于水平结构(梁、板)的混凝土强度等级。钢筋混凝土框架结构,水平施工缝通常留于柱脚,柱顶若要留水平施工缝则应留于梁底。若同层的竖向构件和水平构件的混凝土同时浇捣,则柱顶不留施工缝。钢筋混凝土异形柱框架结构是近年来推广使用的一种新型结构体系,其抗震性能一直被人们所关注。研究异形柱框架结构的抗震性能及设计方法,有重要的理论意义和实用价值。 目前国内外研究者对异形柱构件抗震性能的试验研究较为深入,对异形柱框架结构的试验研究则相对较少;对异形柱框架结构基于力的设计方法的研究较多,对基于位移的抗震设计方法的研究则尚属空白,而后者代表了未来结构抗震设计的发展方向。

钢筋混凝土框架结构属于具有多个多余约束的超静定结构,其荷载效应不仅与外荷载大小有关, 还与结构构件的材料特征、几何构造特征有关。钢筋混凝土框架结构的分部优

化设计,即是在结构整体内力分析完成后,根据梁柱各构件的控制内力进行截面优化设计,确定满足荷载效应水平要求的各结构构件的几何特征和配筋量的优化结果,由此导致原结构的几何特征和荷载特征发生变化, 优化结构在现荷载作用下内力分布特征发生变化,各构件控制截面上的控制内力也发生相应变化,据此再进行新一轮的优化设计。因此框架结构的分部优化设计实际上是一个迭代、渐进的寻优过程, 计算结果虽不总能等价于整体优化设计结果,但通常能给出工程实用的满意结果。钢筋混凝土框架结构的分部优化设计方法的具体步骤为:

(1)初始选型:根据结构平面、立面布置及建筑物设计使用功能,分析结构所受的竖向荷载和水平荷载及其传力路线,并考虑施工因素,归并框架梁、柱的类型,初选梁柱的几何尺寸;

(2)结构分析:按照结构的实际几何构造特征,计算结构所受竖向荷载及水平荷载,对钢筋混凝土结构进行空间内力分析。根据结构分析结果,将截面尺寸相同的构件的控制截面内力,根据其大小进行分类,并确定每一类构件的设计控制内力;

(3)截面优化设计:针对每一种梁柱构件的控制内力进行优化设计, 得出优化约束条件下的结构几何构造特征和配筋特征的优化设计结果,从而构成新的优化意义上的设计结构;

(4)收敛性判断:在工程精度意义上选取一个较小的数值,作为检验结构收敛性的条件,进行收敛性判断。若优化结构与原结构基本一致,则认为优化结构是收敛的,可以转入下一步的可行性判断,否则转回第②步重新进行结构分析、优化设计;

(5)可行性判断:对优化设计结果进行一次内力分析,检验其可用性。若整体分析能够满足工程设计要求,则可按此方案进行配筋和构造处理,作为最终的优化设计结果。否则需根据工程经验和结构内力分析结果进行局部调整,直到方案可用为止。

目前,国内外对钢管混凝土结构的研究多集中于基本构件的力学行为,较好开展钢管混凝土框架结构工作性能的研究。本文对钢管混凝土框架结构的抗震性能进行试验与理论研究,具有重要的工程实践和理论指导意义。钢管混凝土框架结构抗震性能的试验研究。基于现有规范相关规定,设计的钢管混凝土框架在低周反复荷载下能形成梁铰破坏机制。其变形能力、承载能力、延性、耗能能力等受力性能均满足抗震要求。框架模型的有效延性系数达到7.54,远大于一般延性框架延性系数的要求。基于钢管混凝土柱抗弯刚度研究成果,应用“D”值法的基本原理,计算钢管混凝土框架结构的水平侧移,与试验测试值符合较好。

在土木工程的发展过程中,工程实践经验常先行于理论,工程事故常显示出未能预见的新因素,触发新理论的研究和发展。至今不少工程问题的处理,在很大程度上仍然依靠实践经验。

[1] 李文庆; 浅析钢筋混凝土框架结构设计[J]. 沿海企业与科技 2010年06期

[2]高峰; 框架结构设计的探讨[J]. 今日科苑 2010年20期

[3] 徐俊民; 钢筋混凝土框架结构设计应注意的问题[J]. 建设科技 2008年13期

[4]同济大学等,《混凝土结构与砌体结构设计》,北京:中国建筑工业出版社,, 2008

[5]王可峰. 高层结构体系的选择, 山西建筑, 2009(15): 53-54

[6] 同济大学等,《混凝土结构与砌体结构设计》,北京:中国建筑工业出版社,, 2008

[7] 夏銮; 宁国栋; 框架结构混凝土的施工[J]. 中小企业管理与科技 2007年06期

[8] 黄雅捷; 钢筋混凝土异形柱框架结构抗震性能及性能设计方法研究[D]. 西安建筑科技大学 2003

[9]李健豪. 浅谈某高层建筑结构优化设计,建材与装饰, 2007(11): 5-6

[10] 许成祥; 钢管混凝土框架结构抗震性能的试验与理论研究[D]. 天津大学 2003

[11]《Seismic retrofit schemes for RC structures and local–global consequences》 G.E.Thermou(Greece) and A.S.Elnashai(USA) 2006.8

[12]Sohn H;Law K H Extraction of Ritz vectors from vibration test data [外文期刊] 2001(01)

Research progress of frame structure

With the development of economy, the improvement of people

Form of a framework, can form a large interior space, flexible architectural layout. Therefore, frame structure in the structural design of very wide application, for the internal force of the frame structure at present, the use of computer aided software for analysis and calculation, but at present some engineering design personnel excessively dependent results obtained by the computer, and the lack of independent analysis, problem solving ability, resulting in some drawings appear unnecessary, for after the accident to bury next hidden trouble. Each designer's experience is different, the understanding of the specification is different, so when dealing with a design problem, it will take a different approach. The reinforced concrete frame structure is composed of four kinds of bearing members, floor, beam, column and foundation.. By the main girder, column and foundation constitute plane frame, each plane frame is connected by continuous beam to form space structure system. Reinforced concrete frame structure is a composed of beams and columns of statically indeterminate structure, under the action of earthquake and wind load for design ductility structure, to a good absorption and dissipation energy to ensure structure has enough ability to resist deformation and ensure the safety of the structure. When the frame structure system is adopted, the frame beam should vertically and horizontally to form a bidirectional lateral force component, so that it has strong spatial integrity and can bear the lateral force in any direction.. The frame structure has the advantages of flexible building layout, lively shape and so on, it can form a large space, easy to meet the use requirements of multi-function. In the aspect of structure stress, the frame structure belongs to the flexible structure, the vibration period is longer, the seismic response is small, and the structure is reasonable, and can have good ductility.. The disadvantage is that the whole lateral stiffness is small, in the strong earthquake underside to the deformation, easy to fill wall crack and caused destruction of building decoration, glass curtain wall, such as non structural component. Not only can the earthquake endanger personal safety and property damage, but also the restoration after the earthquake and the cost is also great. The lower the bearing capacity of frame structure, its stress characteristics similar to vertical shear cantilever beam, the higher floors, horizontal displacement of the slower, high-rise frame in both horizontal and vertical direction are under a lot of horizontal force, at this time, we poured concrete floors also as beam interaction component, assembled monolithic floor effect is not considered, wall frame structure is filled wall, separated from the envelope and the role. Vertical and horizontal to the framework

of mixed loading program aspect to the framework of mixed loading scheme is along both horizontal and vertical direction are arranged frame beam, as the floor of the main beam, floor load is composed of a longitudinal, transverse frame beam shared. It has a better overall performance. Different grade concrete adjacent to the surface of the left in the reinforced concrete structure, the frame structure of tall buildings of beam column joints is more complex, as a result of calculation and load combination of internal forces, with a layer of the vertical structure of column and wall concrete strength grade is higher than that of the concrete strength grade level structure (beam, slab). Reinforced concrete frame structure, horizontal construction joints usually stay in the column, column to stay horizontal construction joints shall be left at the bottom of beam. If the same layer of the vertical component and the horizontal component of the concrete pouring is not at the same time, the construction joints left. The reinforced concrete special-shaped column frame structure is a new type of structure system used in recent years, and its seismic performance has been concerned by people.. The seismic performance and design method of the special-shaped column frame structures are of great significance and practical value.. The experimental study of domestic and foreign research on the special-shaped columns deeply, experimental study on frame structure with special-shaped columns is less; of special-shaped column frame structure based on the strength design method of more, based on the study of the aseismatic design method of displacement is blank, while the latter represents the development direction of future seismic design of structures.

The reinforced concrete frame structure is a statically indeterminate structure of multiple redundant constraints, the load effect not only with the size of the external load on, and the material characteristics of structural members, the geometric structure feature. Division of reinforced concrete frame structure optimization design, that is, after the completion of the internal force analysis of the whole structure, according to the control of internal force Liang Zhuge component of section optimization design, determined to meet the horizontal load effect of the structure of the geometric characteristics and reinforcement amount of optimization results, which leads to changes in the geometric and load characteristics of the original structure, structure optimization under the present load internal force distribution changes, the members of the control section of the control force also change accordingly, according to the optimization design of a new round of. The division of frame structure optimization design is actually an iterative and incremental search and, though calculation results are not always equivalent to the overall optimization design results, but usually can practical engineering are presented with satisfactory results. The concrete steps of the partial optimal design of reinforced concrete frame structures are:

(1) the initial selection: according to the structural plane and elevation layout and building design function. Analysis for structures subjected to vertical load and horizontal load and force transmission route, and to consider the construction

factors, merge the frame beam and column type, primary beam and column geometry;

(2) structural analysis: according to the actual geometry of the structure, the structure is calculated by vertical load and horizontal load, and the reinforced concrete structure is analyzed by the space internal force.. According to the results of structure analysis, the internal force of the same member is controlled by the same size, and the internal force of the design of each type of member is determined.;

(3) section optimization design: for every kind of beams and columns of control internal force optimized design, obtains the optimization under the constraints of structure geometric structure characteristics and reinforcement characteristics and to optimize the design of the, which constitute the significance of new optimization design of structure;

(4) convergence judgment: in the sense of engineering accuracy, a small number is chosen as the condition for the structural convergence of the test, and the convergence of the judgment is carried out.. If the optimized structure is basically in agreement with the original structure, it is considered that the optimization structure is convergent and can be transferred to the next feasible judgment, otherwise the reverse step II is re structure analysis and optimization design.;

(5) the feasibility of the judgment: the results of the optimization design of a internal force analysis, testing its availability. If the overall analysis can meet the engineering design requirements, then can be carried out according to this scheme reinforcement and structure processing, as the final optimization design results. Otherwise, according to the engineering experience and structure internal force analysis results of local adjustment, until the program can be used.

At present, the research on the structure of the concrete filled steel tube at home and abroad mostly focus on the mechanical behavior of the basic components, and the structure of the concrete filled steel tube is studied.. In this paper, the seismic behavior of CFST frame structures is studied, and has important engineering practice and theoretical guidance.. Experimental study on seismic behavior of concrete filled steel tube frame structures. Based on the existing codes, the design of the concrete filled steel tubular frame can form the failure mechanism of beam hinge under low cyclic loading.. Its deformation ability, bearing capacity, ductility, energy dissipation and other mechanical properties are all meet the seismic requirements. The effective ductility factor of the frame model is 7.54, which is far greater than the ductility factor of the general ductility frame.. Based on the research results of flexural rigidity of CFST column, the basic principle of D value method is applied, and the horizontal displacement of CFST frame structure is calculated, and the test results are in good agreement with the test values of .

In the development of civil engineering, engineering practice often first line in theory, engineering accidents often show the failure to foresee the new factor, triggering the new theory research and development. So far, many problems of engineering treatment, still rely on practical experience in a large extent .

[1]Li Wenqing ; [J]. design of reinforced concrete frame structure of coastal enterprises and science and technology in 2010 06

[2]The peak of [J]; frame structure design today Keyuan 2010 20

[3] Xu Junmin; attention should be paid to the design of reinforced concrete frame structure construction technology in 2008 13 [J].

[4] Tongji University,

[5] Wang Kefeng. The choice of structural styles, Shanxi building, 2009 (15): 53-54

[6] Tongji University,

[7] Xia Luan; Ning Guodong; concrete frame structure construction [J]. management of small and medium-sized enterprises and science and technology in 2007 06

[8] Huang Yajie; reinforced concrete special-shaped column frame structure seismic performance and design method of performance [D]. Xi'an University of architecture and technology, 2003

[9] Li Jianhao. A tall building structure optimization design, building materials and decoration, 2007 (11): 5-6

[10] Xu Chengxiang; test and study of [D]. theory of Tianjin University performance steel concrete frame structure seismic 2003

[11]

H Law; K H Extraction of Ritz vectors from vibration test data [12]Sohn [foreign language periodicals] 2001 (01)

范文七:土木工程英语文献原文及中文翻译 投稿:石妲妳

外文翻译

学院:能源与建筑工程学院

专业:

姓名:

学号:级土木工程 李守玉 201011010721 10

Civil engineering introduction papers

Abstract: the civil engineering is a huge discipline, but the main one is building, building whether in China or abroad, has a long history, long-term development process. The world is changing every day, but the building also along with the progress of science and development.

Mechanics findings, material of update, ever more scientific technology into the building. But before a room with a tile to cover the top of the house, now for comfort, different ideas, different scientific, promoted the development of civil engineering, making it more perfect.

[key words] : civil engineering; Architecture; Mechanics, Materials. Civil engineering is build various projects collectively. It was meant to be and

scientific, to Engineering became Civil Engineering of specialized nouns. So far, in English, to Engineering include water conservancy project, port Engineering, While in our country, water conservancy projects and port projects also become very close and civil engineering relatively

independent branch. Civil engineering construction of object, both refers to that built on the ground, underground water engineering facilities, also refers to applied materials equipment and conduct of the

investigation, design and construction, maintenance, repair and other professional technology.

Civil engineering is a kind of with people's food, clothing, shelter and transportation has close relation of the project. Among them with

Civil engineering with the progress of human society and development, yet has evolved into large-scale comprehensive discipline, it has out many branch, such as: architectural engineering, the railway engineering, road engineering, bridge engineering, special engineering structure, water

and wastewater engineering, port engineering, hydraulic engineering, environment engineering disciplines. [1]

Civil engineering as an important basic disciplines, and has its important attributes of: integrated, sociality, practicality, unity. Civil engineering for the development of national economy and the

improvement of people's life provides an important material and technical basis, for many industrial invigoration played a role in promoting, engineering construction is the formation of a fixed asset basic

production process, therefore, construction and real estate become in many countries and regions, economic powerhouses.

Construction project is housing planning, survey, design,

construction of the floorboard. Purpose is for human life and production provide places.

Houses will be like a man, it's like a man's life planning environment is responsible by the planners, Its layout and artistic processing, corresponding to the body shape looks and temperament, is responsible by the architect, Its structure is like a person's bones and life expectancy, the structural engineer is responsible, Its water, heating ventilation and electrical facilities such as the human organ and the nerve, is by the equipment engineer is responsible for. Also like nature intact shaped like people, in the city I district planning based on build houses, and is the construction unit, reconnaissance unit, design unit of various design engineers and construction units comprehensive coordination and cooperation process.

After all, but is structural stress body reaction force and the internal stress and how external force balance. Building to tackle, also must solve the problem is mechanical problems. We have to solve the problem of discipline called architectural mechanics. Architectural mechanics have can be divided into: statics, material mechanics and structural mechanics three mechanical system. Architectural mechanics is discussion and research building structure and component in load and other factors affecting the working condition of, also is the building of intensity, stiffness and stability. In load, bear load and load of structure and component can cause the surrounding objects in their function, and the object itself by the load effect and deformation, and there is the possibility of damage, but the structure itself has certain resistance to deformation and destruction of competence, and the bearing capacity of the structure size is and component of materials, cross section, and the structural properties of geometry size, working conditions and structure circumstance relevant. While these relationships can be improved by mechanics formula solved through calculation.

Building materials in building and has a pivotal role. Building material is with human society productivity and science and technology

improves gradually developed. In ancient times, the human lives, the line USES is the rocks and

Trees. The 4th century BC, 12 ~ has created a tile and brick, humans are only useful synthetic materials made of housing. The 17th century had cast iron and ShouTie later, until the eighteenth century had Portland cement, just make later reinforced concrete engineering get vigorous development. Now all sorts of high-strength structural materials, new decoration materials and waterproof material development, criterion and 20th century since mid organic polymer materials in civil engineering are closely related to the widely application. In all materials, the most main and most popular is steel, concrete, lumber, masonry. In recent years, by using two kinds of material advantage, will make them together, the combination of structure was developed. Now, architecture, engineering quality fit and unfit quality usually adopted materials quality,

performance and using reasonable or not have direct connection, in meet the same technical indicators and quality requirements, under the

precondition of choice of different material is different, use method of engineering cost has direct impact.

In construction process, building construction is and architectural mechanics, building materials also important links. Construction is to the mind of the designer, intention and idea into realistic process, from the ancient hole JuChao place to now skyscrapers, from rural to urban country road elevated road all need through

reinforced concrete structure engineering, structural lifting project, waterproofing, decorate projects, each type of project has its own rules, all need according to different construction object and construction environment conditions using relevant construction technology, in work-site.whenever while, need and the relevant hydropower and other equipment composition of a whole, each project between reasonable organizing and coordination, better play investment benefit. Civil engineering construction in the benefit, while also issued by the state in strict accordance with the relevant construction technology standard, thus further enhance China's construction level to ensure construction quality, reduce the cost for the project.

Any building built on the surface of the earth all strata, building weight eventually to stratum, have to bear. Formation Support building the rocks were referred to as foundation, and the buildings on the ground and under the upper structure of self-respect and liable to load transfer to the foundation of components or component called foundation.

Foundation, and the foundation and the superstructure is a building of three inseparable part. According to the function is different, but in load, under the action of them are related to each other, is the

interaction of the whole. Foundation can be divided into natural

foundation and artificial foundation, basic according to the buried depth is divided into deep foundation and shallow foundation. , foundation and foundation is the guarantee of the quality of the buildings and normal use close button, where buildings foundation in building under loads of both must maintain overall stability and if the settlement of foundation produce in building scope permitted inside, and foundation itself should have sufficient strength, stiffness and durability, also consider repair methods and the necessary foundation soil retaining retaining water and relevant measures. [3]

As people living standard rise ceaselessly, the people to their place of building space has become not only from the number, and put forward higher requirement from quality are put car higher demands that the environment is beautiful, have certain comfort. This needs to decorate a building to be necessary. If architecture major engineering constitutes the skeleton of the building, then after adornment building has become the flesh-and-blood organism, final with rich, perfect appearance in people's in front, the best architecture should fully embody all sorts of adornment material related properties, with existing construction technology, the most effective gimmick, to achieve conception must express effect. Building outfit fix to consider the architectural space use requirement, protect the subject institutions from damage, give a person with beautifulenjoying, satisfy the requirements of fire

evacuation, decorative materials and scheme of rationality, construction technology and economic feasibility, etc. Housing construction

development and at the same time, like housing construction as affecting people life of roads, Bridges, tunnels has made great progress.

In general civil engineering is one of the oldest subjects, it has made great achievements, the future of the civil engineering will occupy in people's life more important position. The environment worsening population increase, people to fight for survival, to strive for a more comfortable living environment, and will pay more attention to civil engineering. In the near future, some major projects extimated to build, insert roller skyscrapers, across the ocean

Bridges, more convenient traffic would not dream. The development of science and technology, and the earth is deteriorating environment will be prompted civil engineering to aerospace and Marine development, provide mankind broader space of living. In recent years, engineering materials mainly is reinforced concrete, lumber and brick materials, in the future, the traditional materials will be improved, more suitable for some new building materials market, especially the chemistry materials will promote the construction of towards a higher point. Meanwhile, design method of precision, design work of automation, information and intelligent technology of introducing, will be people have a more

comfortable living environment. The word, and the development of the theory and new materials, the emergence of the application of computer, high-tech introduction to wait to will make civil engineering have a new leap.

This is a door needs calm and a great deal of patience and attentive professional. Because hundreds of thousands, even hundreds of thousands of lines to building each place structure clearly reflected. Without a gentle state of mind, do what thing just floating on the surface, to any a building structure, to be engaged in business and could not have had a clear, accurate and profound understanding of, the nature is no good. In this business, probably not burn the midnight oil of courage, not to reach the goal of spirit not to give up, will only be companies eliminated.

This is a responsible and caring industry. Should have a single responsible heart - I one's life in my hand, thousands of life in my hand. Since the civil, should choose dependably shoulder the responsibility.

Finally, this is a constant pursuit of perfect industry. Pyramid, spectacular now: The Great Wall, the majestic... But if no generations of the pursuit of today, we may also use the sort of the oldest way to build this same architecture. Design a building structure is numerous, but this is all experienced centuries of clarification, through

continuous accumulation, keep improving, innovation obtained. And such pursuit, not confined in the past. Just think, if the design of a building can be like calculation one plus one equals two as simple and easy to grasp, that was not for what? Therefore, a civil engineer is in constant of in formation. One of the most simple structure, the least cost, the biggest function. Choose civil, choosing a steadfast diligence, innovation, pursuit of perfect path.

Reference:

[1] LuoFuWu editor. Civil engineering (professional). Introduction to wuhan. Wuhan university of technology press. 2007

[2] WangFuChuan, palace rice expensive editor. Construction

engineering materials. Beijing. Science and technology literature press. 2002

[3] jiang see whales, zhiming editor. Civil engineering introduction of higher education press. Beijing.. 1992

土木工程概论 [译文]

摘要:土木工程是个庞大的学科,但最主要的是建筑,建筑无论是在中国还是在国外,都有着悠久的历史,长期的发展历程。整个世界每天都在改变,而建筑也随科学的进步而发展。力学的发现,材料的更新,不断有更多的科学技术引入建筑中。以前只求一间有瓦盖顶的房屋,现在追求舒适,不同的思想,不同的科学,推动了土木工程的发展,使其更加完美。

[关键词]:土木工程;建筑;力学;材料。

土木工程是建造各种工程的统称。它的原意是与“军事工程”相对应的。在英语中,历史上土木工程、机械工程、电气工程、化工工程都属于Civil

Engineering,因为它们都具有民用性。后来,随着工程科学技术的发展,机械、电气、化工都已逐渐形成独立的科学,Civil Engineering就成为土木工程的专门名词。至今,在英语中,Civil Engineering还包括水利工程、港口工程;而在我国,水利工程和港口工程也成为与土木工程十分密切的相对独立分支。土木工程既指建设的对象,即建造在地上,地下,水中的工程设施,也指应用的材料设备和进行的勘测,设计施工,保养,维修等专业技术。

土木工程是一种与人们的衣、食、住、行有着密切关系的工程。其中与“住”的关系是直接的。因为,要解决“住”的问题必须建造各种类型的建筑物。而解决“行、食衣”的问题既有直接的一面,也有间接的一面。要“行”,必须建造铁路、道路、桥梁;要“食”,必须打井取水、兴修水利、进行农田灌溉、城市供水排水等,这是直接关系。而间接关系则不论做什么,制造汽车、轮船也好,纺纱、织布、制衣也好,乃至生产钢铁、发射卫星、开展科学研究活动都离不开建造各种建筑物、构筑物和修建各种工程设施。

土木工程随着人类社会的进步而发展,至今已经演变成为大型综合性的学科,它已经出许多分支,如:建筑工程,铁路工程,道路工程,桥梁工程,特种工程结构,给水排水工程,港口工程,水利工程,环境工程等学科。[1]

土木工程作为一个重要的基础学科,有其重要的属性:综合性,社会性,实践性,统一性。土木工程为国民经济的发展和人民生活的改善提供了重要 的物质技术基础,对众多产业的振兴发挥了促进作用,工程建设是形成固定资产的基本生产过程,因此,建筑业和房地产成为许多国家和地区的经济支柱之一。 建筑工程就是兴建房屋规划,勘测,设计,施工的总称。目的是为人类的生产和生活提供场所。

房屋好比一个人,它的规划就像人生活的环境,是由规划师负责的;它的布局和艺术处理相应于人的体形、容貌、气质,是由建筑师负责的;它的结构好比人的骨骼和寿命,是由结构工程师负责的;它的给排水、供热通风和电气等设施就如人的器官、神经,是由设备工程师负责的。也像自然界完好地塑造人一样,在城市我地区规划基础上建造房屋,是建设单位,勘察单位、设计单位的各种设计工程师和施工单位全面协调合作的过程。

结构说穿了,不过就是受力体的反力与内部应力如何与外力达到平衡。建筑首先要解决,也是必须要解决的问题就是受力的问题。我们把解决 这个问题的学科称为建筑力学。建筑力学有可以分为:静力学,材料力学和结构力学三大力学体系。建筑力学是讨论和研究建筑结构及构件在荷载和其他因素影响的 工作状况,也就是建筑的强度,刚度,稳定性。在载荷作用下,承受载荷和传递载荷的建筑结构和构件会引起周围的物体对它们的作用,同时物件本身受载荷作用而 产生变形,并且存在着被破坏的可能性,但是结构本身就具有一定的抵抗变形和破坏的能力,而结构的承载能力的大小是与构件的材料,截面的几何尺寸,受力性质,工作条件和构造情况有关。而这些关系都可以由力学关系式通过计算而得以解决。

建筑材料在建筑中也有着举足轻重的作用。建筑材料是随着人类社会生产力和科学技术的提高而逐步发展起来的。远古时代,人类的住、行采用的是石块和 树木。公元前12~4世纪先后创制了瓦和砖,人类才有用人造材料做成的住房。17世纪有了生铁和熟铁以后,直到18世纪有了波特兰水泥,才使后来的钢筋混

凝土工程得到蓬勃发展。如今各种高强度结构材料、新型装饰材料和防水材料的开发,则和20世纪中期以来高分子有机材料在土木工程中的广泛应用密切相关。在所有材料中,最为主要和最为大众的是钢材、混凝土、木材、砌体。近年来,采用两种材料的优点,将它们组合在一起,做成的组合结构得到很快发展。现在的建筑中,工程质量的优劣通常与所采用材料的优劣,性能及使用的合理与否有直接的联系,在满足相同技术指标和质量要求的前提下,选择不同的材料不同的使用方法,都对工程的造价有直接的影响。[2]

在建筑过程中,建筑工程施工是和与建筑力学,建筑材料同样重要的一个环节。建筑施工是将设计者的思想,意图及构思转化为现实的过程,从古代的穴居巢处到现在的摩天大楼,从农村的乡间小道到城市的高架道路都需要通过“施工”的手段来实现。一个工程的施工包括许多工种工程,诸如土石方工程,深基坑支护工程,基础工程,钢筋混凝土结构工程,结构吊装工程,防水工程,装饰工程等,各个工种工程都有自己的规律,都需要根据不同的施工对象及施工环境条件采用相应的施工技术,在土建施工的同时,需要与有关的水电及其它设备组成一个整体,各工程之间合理的组织与协调,更好的发挥投资的效益。土木工程施工在发挥效益的同时,还要严格按照国家颁发的有关施工技术规范,从而进一步提高我国的施工水平,保证施工质量,降低工程成本。

任何建筑无不修建在地球表面的地层上,建筑的重量最后都会传给地层,有地层来承受。支撑建筑的地层被统称为地基,建筑物在地面以下并将上部 结构的自重与所承担的载荷传递到地基上的构件或部分构件称为基础。地基,基础和上部结构是建筑物的三个不可分割的部分。三者的功能不同,但在载荷的作用下, 它们彼此相关,是共同作用的整体。地基可分为天然地基和人工地基,基础根据埋深分为深基础和浅基础。,基础和地基的质量是保证建筑物的安全和正常使用的关 键所在,建筑物的地基在建筑物的载荷作用下既要保持整体的稳定性又要是地基产生的沉降在建筑物许可范围内,而地基本身应有足够的强度,刚度和耐久性,同时还要考虑修基础的方法和必要的挡土挡水及相关措施。 [3]

随着人们生活的水平的不断提高,人们对自己所处的建筑空间已经不仅仅单纯从数量上提出更高的要求,而且从质量上也提车了更高的要求,要求环境的美观,有一定的舒适度。这就需要对建筑进行必要的装修。如果说建筑主体工程构成了建筑的骨架,那么装饰后的建筑则成了有血有肉的有机体,最终以丰富的,完善的面貌出现在人们的面前,最佳的建筑应该充分体现各种装饰材料的有关特性,结合现有的施工技术,最有效的手法,来达到构思所要表达的效果。建筑装 修要考虑建筑空间的使用要求,保护主体机构免受损害,给人以美的享受,满足消防疏散的要求,装饰材料和方案的合理性,施工技术和经济的可行性等。房屋建筑发展的同时,像房屋建筑一样影响着人们生活的道路,桥梁,隧道等也取得了长足的发展。

总的来说土木工程是一门古老的学科,它已经取得了巨大的成就,未来的土木工程将在人们的生活中占据更重要的地位。地球环境的日益恶化,人口的不断增加,人们为了争取生存,为了争取更舒适的生存环境,必将更加重视土木工程。在不久的将来,一些重大项目将会陆续兴建,插入云霄的摩天大楼,横跨大洋的 桥梁,更加方便的交通将不是梦想。科技的发展,以及地球不断恶化的环境必将促使土木工程向太空和海洋发展,为人类提供更广阔的生存空间。近年来,工程 材料主要是钢筋,混凝土,木材和砖材,在未来,传统材料将得到改观,一些全新的更加适合建筑的材料将问世,尤其是化学合成材料将推动建筑走向更高点。

同时,设计方法的精确化,设计工作的自动化,信息和智能化技术的全面引入,将会是人们有一个更加舒适的居住环境。一句话,理论的发展,新材料的出现,计算机的应用,高新技术的引入等都将使土木工程有一个新的飞跃。

这是一门需要心平气和和极大的耐心和细心的专业。因为成千上万,甚至几十万根线条要把建筑物的每一处结构清楚的反映出来。没有一个平和的心态,做什么事情都只是浮在表面上,对任何一幢建筑的结构,对要从事的事业便不可能有一个清晰、准确和深刻的认识,这自然是不行的。从事这个行业,可能没有挑灯夜战的勇气,没有不达目的不罢休的精神,只会被同行所淘汰。

这是一个需要责任感和爱心的行业。要有一颗负责的心——我一人之命在我手,千万人之命在我手。既然选择了土木,就应该踏踏实实的肩负起这个责任。

最后,这是一个不断追求完美的行业。金字塔,壮观吧;长城,雄伟吧......但如果没有一代又一代人的不断追求,今天的我们或许还用那种最古老的办法来造这同样的建筑。设计一幢建筑的结构是很繁,但是这都是经历了数个世纪的涤荡,经过不断的积累,不断改良,不断创新所得到的。而且这样的追求,绝不局限于过去。试想,如果设计一幢建筑能够像计算一加一等于二一样简单而易于掌握,那何了而不为呢?因此,土木工程师总是在不断的求索中。一个最简单的结构,最少的耗费,最大的功用。选择土木,选择了一条踏实勤奋,不断创新,追求完美的道路。

范文八:土木工程英语文献原文及中文翻译 投稿:冯壇壈

课程名称:土木工程专业英语

设计题目:土木工程概论 院系:土木工程系 专业:铁道工程 年级: 姓名:陈彬

指导教师:唐秀军

西南交通大学峨眉校区

2011年5月12日

Civil engineering introduction papers[英语原文]

Abstract: the civil engineering is a huge discipline, but the main one is building, building whether in China or abroad, has a long history, long-term development process. The world is changing every day, but the building also along with the progress of science and development.

Mechanics findings, material of update, ever more scientific technology into the building.But before a room with a tile to cover the top of the house, now for comfort, different ideas, different scientific, promoted the development of civil engineering, making it more perfect.

[key words] : civil engineering; Architecture; Mechanics, Materials.

Civil engineering is build various projects collectively. It was meant to be and

scientific, to Engineering became Civil Engineering of specialized nouns. So far, in English, to Engineering include water conservancy project, port Engineering, While in our country, water conservancy projects and port projects also become very close and civil engineering relatively

independent branch. Civil engineering construction of object, both refers to that built on the ground, underground water engineering facilities, also refers to applied materials equipment and conduct of the

investigation, design and construction, maintenance, repair and other professional technology.

Civil engineering is a kind of with people's food, clothing, shelter and transportation has close relation of the project. Among them with

Civil engineering with the progress of human society and development, yet has evolved into large-scale comprehensive discipline, it has out many branch, such as: architectural engineering, the railway engineering, road engineering, bridge engineering, special engineering structure, water

and wastewater engineering, port engineering, hydraulic engineering, environment engineering disciplines. [1]

Civil engineering as an important basic disciplines, and has its important attributes of: integrated, sociality, practicality, unity. Civil engineering for the development of national economy and the

improvement of people's life provides an important material and technical basis, for many industrial invigoration played a role in promoting, engineering construction is the formation of a fixed asset basic

production process, therefore, construction and real estate become in many countries and regions, economic powerhouses.

Construction project is housing planning, survey, design,

construction of the floorboard. Purpose is for human life and production provide places.

Houses will be like a man, it's like a man's life planning environment is responsible by the planners, Its layout and artistic processing, corresponding to the body shape looks and temperament, is responsible by the architect, Its structure is like a person's bones and life expectancy, the structural engineer is responsible, Its water, heating ventilation and electrical facilities such as the human organ and the nerve, is by the equipment engineer is responsible for. Also like nature intact shaped like people, in the city I district planning based on build houses, and is the construction unit, reconnaissance unit, design unit of various design engineers and construction units comprehensive coordination and cooperation process.

After all, but is structural stress body reaction force and the internal stress and how external force balance. Building to tackle, also must solve the problem is mechanical problems. We have to solve the problem of discipline called architectural mechanics. Architectural mechanics have can be divided into: statics, material mechanics and structural mechanics three mechanical system. Architectural mechanics is discussion and research building structure and component in load and other factors affecting the working condition of, also is the building of intensity, stiffness and stability. In load, bear load and load of structure and component can cause the surrounding objects in their function, and the object itself by the load effect and deformation, and there is the possibility of damage, but the structure itself has certain resistance to deformation and destruction of competence, and the bearing capacity of the structure size is and component of materials, cross section, and the structural properties of geometry size, working conditions and structure circumstance relevant. While these relationships can be improved by mechanics formula solved through calculation.

Building materials in building and has a pivotal role. Building material is with human society productivity and science and technology

improves gradually developed. In ancient times, the human lives, the line USES is the rocks and

Trees. The 4th century BC, 12 ~ has created a tile and brick, humans are only useful synthetic materials made of housing. The 17th century had cast iron and ShouTie later, until the eighteenth century had Portland cement, just make later reinforced concrete engineering get vigorous development. Now all sorts of high-strength structural materials, new decoration materials and waterproof material development, criterion and 20th century since mid organic polymer materials in civil engineering are closely related to the widely application. In all materials, the most main and most popular is steel, concrete, lumber, masonry. In recent years, by using two kinds of material advantage, will make them together, the combination of structure was developed. Now, architecture, engineering quality fit and unfit quality usually adopted materials quality,

performance and using reasonable or not have direct connection, in meet the same technical indicators and quality requirements, under the

precondition of choice of different material is different, use method of engineering cost has direct impact.

In construction process, building construction is and architectural mechanics, building materials also important links. Construction is to the mind of the designer, intention and idea into realistic process, from the ancient holeJuChao place to now skyscrapers, from rural to urban country road elevated road all need through

reinforced concrete structure engineering, structural lifting project, waterproofing, decorate projects, each type of project has its own rules, all need according to different construction object and construction environment conditions using relevant construction technology, in work-site.whenever while, need and the relevant hydropower and other equipment composition of a whole, each project between reasonable organizing and coordination, better play investment benefit. Civil engineering construction in the benefit, while also issued by the state in strict accordance with the relevant construction technology standard, thus further enhance China's construction level to ensure construction quality, reduce the cost for the project.

Any building built on the surface of the earth all strata, building weight eventually to stratum, have to bear. Formation Support building the rocks were referred to as foundation, and the buildings on the ground and under the upper structure of self-respect and liable to load transfer to the foundation of components or component called foundation.

Foundation, and the foundation and the superstructure is a building of three inseparable part. According to the function is different, but in load, under the action of them are related to each other, is the

interaction of the whole. Foundation can be divided into natural

foundation and artificial foundation, basic according to the buried depth is divided into deep foundation and shallow foundation. , foundation and foundation is the guarantee of the quality of the buildings and normal use close button, where buildings foundation in building under loads of both must maintain overall stability and if the settlement of foundation produce in building scope permitted inside, and foundation itself should have sufficient strength, stiffness and durability, also consider repair methods and the necessary foundation soil retaining retaining water and relevant measures. [3]

As people living standard rise ceaselessly, the people to their place of building space has become not only from the number, and put forward higher requirement from quality are put car higher demands that the environment is beautiful, have certain comfort. This needs to decorate a building to be necessary. If architecture major engineering constitutes the skeleton of the building, then after adornment building has become the flesh-and-blood organism, final with rich, perfect appearance in people's in front, the best architecture should fully embody all sorts of adornment material related properties, with existing construction technology, the most effective gimmick, to achieve conception must express effect. Building outfit fix to consider the architectural space use requirement, protect the subject institutions from damage, give a person with beautifulenjoying, satisfy the requirements of fire

evacuation, decorative materials and scheme of rationality, construction technology and economic feasibility, etc. Housing construction

development and at the same time, like housing construction as affecting people life of roads, Bridges, tunnels has made great progress.

In general civil engineering is one of the oldest subjects, it has made great achievements, the future of the civil engineering will occupy in people's life more important position. The environment worsening population increase, people to fight for survival, to strive for a more comfortable living environment, and will pay more attention to civil engineering. In the near future, some major projects extimated to build, insert roller skyscrapers, across the ocean

Bridges, more convenient traffic would not dream. The development of science and technology, and the earth is deteriorating environment will be prompted civil engineering to aerospace and Marine development, provide mankind broader space of living. In recent years, engineering materials mainly is reinforced concrete, lumber and brick materials, in the future, the traditional materials will be improved, more suitable for some new building materials market, especially the chemistry materials will promote the construction of towards a higher point. Meanwhile, design method of precision, design work of automation, information and intelligent technology of introducing, will be people have a more

comfortable living environment. The word, and the development of the theory and new materials, the emergence of the application of computer, high-tech introduction to wait to will make civil engineering have a new leap.

This is a door needs calm and a great deal of patience and attentive professional. Because hundreds of thousands, even hundreds of thousands of lines to building each place structure clearly reflected. Without a gentle state of mind, do what thing just floating on the surface, to any a building structure, to be engaged in business and could not have had a clear, accurate and profound understanding of, the nature is no good. In this business, probably not burn the midnight oil of courage, not to reach the goal of spirit not to give up, will only be companies eliminated.

This is a responsible and caring industry. Should have a single responsible heart - I one's life in my hand, thousands of life in my hand. Since the civil, should choose dependably shoulder the responsibility.

Finally, this is a constant pursuit of perfect industry. Pyramid, spectacular now: The Great Wall, the majestic... But if no generations of the pursuit of today, we may also use the sort of the oldest way to build this same architecture. Design a building structure is numerous, but this is all experienced centuries of clarification, through

continuous accumulation, keep improving, innovation obtained. And such pursuit, not confined in the past. Just think, if the design of a building can be like calculation one plus one equals two as simple and easy to grasp, that was not for what? Therefore, a civil engineer is in constant of in formation. One of the most simple structure, the least cost, the biggest function. Choose civil, choosing a steadfast diligence, innovation, pursuit of perfect path.

Reference:

[1] LuoFuWu editor. Civil engineering (professional). Introduction to wuhan. Wuhan university of technology press. 2007

[2] WangFuChuan, palace rice expensive editor. Construction

engineering materials. Beijing. Science and technology literature press. 2002

[3] jiang see whales, zhiming editor. Civil engineering introduction of higher education press. Beijing.. 1992

土木工程概论 [译文]

摘要:土木工程是个庞大的学科,但最主要的是建筑,建筑无论是在中国还是在国外,都有着悠久的历史,长期的发展历程。整个世界每天都在改变,而建筑也随科学的进步而发展。力学的发现,材料的更新,不断有更多的科学技术引入建筑中。以前只求一间有瓦盖顶的房屋,现在追求舒适,不同的思想,不同的科学,推动了土木工程的发展,使其更加完美。

[关键词]:土木工程;建筑;力学;材料。

土木工程是建造各种工程的统称。它的原意是与“军事工程”相对应的。在英语中,历史上土木工程、机械工程、电气工程、化工工程都属于Civil Engineering,因为它们都具有民用性。后来,随着工程科学技术的发展,机械、电气、化工都已逐渐形成独立的科学,Civil Engineering就成为土木工程的专门名词。至今,在英语中,Civil Engineering还包括水利工程、港口工程;而在我国,水利工程和港口工程也成为与土木工程十分密切的相对独立分支。土木工程既指建设的对象,即建造在地上,地下,水中的工程设施,也指应用的材料设备和进行的勘测,设计施工,保养,维修等专业技术。

土木工程是一种与人们的衣、食、住、行有着密切关系的工程。其中与“住”的关系是直接的。因为,要解决“住”的问题必须建造各种类型的建筑物。而解决“行、食衣”的问题既有直接的一面,也有间接的一面。要“行”,必须建造铁路、道路、桥梁;要“食”,必须打井取水、兴修水利、进行农田灌溉、城市供水排水等,这是直接关系。而间接关系则不论做什么,制造汽车、轮船也好,纺纱、织布、制衣也好,乃至生产钢铁、发射卫星、开展科学研究活动都离不开建造各种建筑物、构筑物和修建各种工程设施。

土木工程随着人类社会的进步而发展,至今已经演变成为大型综合性的学科,它已经出许多分支,如:建筑工程,铁路工程,道路工程,桥梁工程,特种工程结构,给水排水工程,港口工程,水利工程,环境工程等学科。[1]

土木工程作为一个重要的基础学科,有其重要的属性:综合性,社会性,实践性,统一性。土木工程为国民经济的发展和人民生活的改善提供了重要 的物质技术基础,对众多产业的振兴发挥了促进作用,工程建设是形成固定资产的基本生产过程,因此,建筑业和房地产成为许多国家和地区的经济支柱之一。 建筑工程就是兴建房屋规划,勘测,设计,施工的总称。目的是为人类的生产和生活提供场所。

房屋好比一个人,它的规划就像人生活的环境,是由规划师负责的;它的布局和艺术处理相应于人的体形、容貌、气质,是由建筑师负责的;它的结构好比人的骨骼和寿命,是由结构工程师负责的;它的给排水、供热通风和电气等设施就如人的器官、神经,是由设备工程师负责的。也像自然界完好地塑造人一样,在城市我地区规划基础上建造房屋,是建设单位,勘察单位、设计单位的各种设计工程师和施工单位全面协调合作的过程。

结构说穿了,不过就是受力体的反力与内部应力如何与外力达到平衡。建筑首先要解决,也是必须要解决的问题就是受力的问题。我们把解决 这个问题的学科称为建筑力学。建筑力学有可以分为:静力学,材料力学和结构力学三大力学体系。建筑力学是讨论和研究建筑结构及构件在荷载和其他因素影响的 工作状况,也就是建筑的强度,刚度,稳定性。在载荷作用下,承受载荷和传递载荷的建筑结构和构件会引起周围的物体对它们的作用,同时物件本身受载荷作用而

产生变形,并且存在着被破坏的可能性,但是结构本身就具有一定的抵抗变形和破坏的能力,而结构的承载能力的大小是与构件的材料,截面的几何尺寸,受力性质,工作条件和构造情况有关。而这些关系都可以由力学关系式通过计算而得以解决。

建筑材料在建筑中也有着举足轻重的作用。建筑材料是随着人类社会生产力和科学技术的提高而逐步发展起来的。远古时代,人类的住、行采用的是石块和 树木。公元前12~4世纪先后创制了瓦和砖,人类才有用人造材料做成的住房。17世纪有了生铁和熟铁以后,直到18世纪有了波特兰水泥,才使后来的钢筋混凝土工程得到蓬勃发展。如今各种高强度结构材料、新型装饰材料和防水材料的开发,则和20世纪中期以来高分子有机材料在土木工程中的广泛应用密切相关。在所有材料中,最为主要和最为大众的是钢材、混凝土、木材、砌体。近年来,采用两种材料的优点,将它们组合在一起,做成的组合结构得到很快发展。现在的建筑中,工程质量的优劣通常与所采用材料的优劣,性能及使用的合理与否有直接的联系,在满足相同技术指标和质量要求的前提下,选择不同的材料不同的使用方法,都对工程的造价有直接的影响。[2]

在建筑过程中,建筑工程施工是和与建筑力学,建筑材料同样重要的一个环节。建筑施工是将设计者的思想,意图及构思转化为现实的过程,从古代的穴居巢处到现在的摩天大楼,从农村的乡间小道到城市的高架道路都需要通过“施工”的手段来实现。一个工程的施工包括许多工种工程,诸如土石方工程,深基坑支护工程,基础工程,钢筋混凝土结构工程,结构吊装工程,防水工程,装饰工程等,各个工种工程都有自己的规律,都需要根据不同的施工对象及施工环境条件采用相应的施工技术,在土建施工的同时,需要与有关的水电及其它设备组成一个整体,各工程之间合理的组织与协调,更好的发挥投资的效益。土木工程施工在发挥效益的同时,还要严格按照国家颁发的有关施工技术规范,从而进一步提高我国的施工水平,保证施工质量,降低工程成本。

任何建筑无不修建在地球表面的地层上,建筑的重量最后都会传给地层,有地层来承受。支撑建筑的地层被统称为地基,建筑物在地面以下并将上部 结构的自重与所承担的载荷传递到地基上的构件或部分构件称为基础。地基,基础和上部结构是建筑物的三个不可分割的部分。三者的功能不同,但在载荷的作用下, 它们彼此相关,是共同作用的整体。地基可分为天然地基和人工地基,基础根据埋深分为深基础和浅基础。,基础和地基的质量是保证建筑物的安全和正常使用的关 键所在,建筑物的地基在建筑物的载荷作用下既要保持整体的稳定性又要是地基产生的沉降在建筑物许可范围内,而地基本身应有足够的强度,刚度和耐久性,同时还要考虑修基础的方法和必要的挡土挡水及相关措施。 [3]

随着人们生活的水平的不断提高,人们对自己所处的建筑空间已经不仅仅单纯从数量上提出更高的要求,而且从质量上也提车了更高的要求,要求环境的美观,有一定的舒适度。这就需要对建筑进行必要的装修。如果说建筑主体工程构成了建筑的骨架,那么装饰后的建筑则成了有血有肉的有机体,最终以丰富的,完善的面貌出现在人们的面前,最佳的建筑应该充分体现各种装饰材料的有关特性,结合现有的施工技术,最有效的手法,来达到构思所要表达的效果。建筑装 修要考虑建筑空间的使用要求,保护主体机构免受损害,给人以美的享受,满足消防疏散的要求,装饰材料和方案的合理性,施工技术和经济的可行性等。房屋建筑发展的同时,像房屋建筑一样影响着人们生活的道路,桥梁,隧道等也取得了长足的发展。

总的来说土木工程是一门古老的学科,它已经取得了巨大的成就,未来的土木工程将在人们的生活中占据更重要的地位。地球环境的日益恶化,人口的不断增加,人们为了争取生存,为了争取更舒适的生存环境,必将更加重视土木工程。在不久的将来,一些重大项目将会陆续兴建,插入云霄的摩天大楼,横跨大洋的 桥梁,更加方便的交通将不是梦想。科技的发展,以及地球不断恶化的环境必将促使土木工程向太空和海洋发展,为人类提供更广阔的生存空间。近年来,工程 材料主要是钢筋,混凝土,木材和砖材,在未来,传统材料将得到改观,一些全新的更加适合建筑的材料将问世,尤其是化学合成材料将推动建筑走向更高点。同时,设计方法的精确化,设计工作的自动化,信息和智能化技术的全面引入,将会是人们有一个更加舒适的居住环境。一句话,理论的发展,新材料的出现,计算机的应用,高新技术的引入等都将使土木工程有一个新的飞跃。

这是一门需要心平气和和极大的耐心和细心的专业。因为成千上万,甚至几十万根线条要把建筑物的每一处结构清楚的反映出来。没有一个平和的心态,做什么事情都只是浮在表面上,对任何一幢建筑的结构,对要从事的事业便不可能有一个清晰、准确和深刻的认识,这自然是不行的。从事这个行业,可能没有挑灯夜战的勇气,没有不达目的不罢休的精神,只会被同行所淘汰。

这是一个需要责任感和爱心的行业。要有一颗负责的心——我一人之命在我手,千万人之命在我手。既然选择了土木,就应该踏踏实实的肩负起这个责任。

最后,这是一个不断追求完美的行业。金字塔,壮观吧;长城,雄伟吧......但如果没有一代又一代人的不断追求,今天的我们或许还用那种最古老的办法来造这同样的建筑。设计一幢建筑的结构是很繁,但是这都是经历了数个世纪的涤荡,经过不断的积累,不断改良,不断创新所得到的。而且这样的追求,绝不局限于过去。试想,如果设计一幢建筑能够像计算一加一等于二一样简单而易于掌握,那何了而不为呢?因此,土木工程师总是在不断的求索中。一个最简单的结构,最少的耗费,最大的功用。选择土木,选择了一条踏实勤奋,不断创新,追求完美的道路。

参考文献:

[1]罗福午主编.土木工程(专业)概论.武汉.武汉理工大学出版社.2007年

[2]王福川,宫米贵主编.建筑工程材料.北京.科学技术文献出版社.2002年

[3]江见鲸,叶志明主编.土木工程概论.北京.高等教育出版社.1992年

范文九:土木工程英语文献原文及中文翻译 投稿:卢濫濬

Civil engineering introduction papers[英语原文]

Abstract: the civil engineering is a huge discipline, but the main one is building, building whether in China or abroad, has a long history, long-term development process. The world is changing every day, but the building also along with the progress of science and development.

Mechanics findings, material of update, ever more scientific technology into the building. But before a room with a tile to cover the top of the house, now for comfort, different ideas, different scientific, promoted the development of civil engineering, making it more perfect.

[key words] : civil engineering; Architecture; Mechanics, Materials.

Civil engineering is build various projects collectively. It was meant to be and

scientific, to Engineering became Civil Engineering of specialized nouns. So far, in English, to Engineering include water conservancy project, port Engineering, While in our country, water conservancy projects and port projects also become very close and civil engineering relatively

independent branch. Civil engineering construction of object, both refers to that built on the ground, underground water engineering facilities, also refers to applied materials equipment and conduct of the

investigation, design and construction, maintenance, repair and other professional technology.

Civil engineering is a kind of with people's food, clothing, shelter and transportation has close relation of the project. Among them with

Civil engineering with the progress of human society and development, yet has evolved into large-scale comprehensive discipline, it has out many branch, such as: architectural engineering, the railway engineering, road engineering, bridge engineering, special engineering structure, water

and wastewater engineering, port engineering, hydraulic engineering, environment engineering disciplines. [1]

Civil engineering as an important basic disciplines, and has its important attributes of: integrated, sociality, practicality, unity. Civil engineering for the development of national economy and the

improvement of people's life provides an important material and technical basis, for many industrial invigoration played a role in promoting, engineering construction is the formation of a fixed asset basic

production process, therefore, construction and real estate become in many countries and regions, economic powerhouses.

Construction project is housing planning, survey, design,

construction of the floorboard. Purpose is for human life and production provide places.

Houses will be like a man, it's like a man's life planning environment is responsible by the planners, Its layout and artistic processing, corresponding to the body shape looks and temperament, is responsible by the architect, Its structure is like a person's bones and life expectancy, the structural engineer is responsible, Its water, heating ventilation and electrical facilities such as the human organ and the nerve, is by the equipment engineer is responsible for. Also like nature intact shaped like people, in the city I district planning based on build houses, and is the construction unit, reconnaissance unit, design unit of various design engineers and construction units comprehensive coordination and cooperation process.

After all, but is structural stress body reaction force and the internal stress and how external force balance. Building to tackle, also must solve the problem is mechanical problems. We have to solve the problem of discipline called architectural mechanics. Architectural mechanics have can be divided into: statics, material mechanics and structural mechanics three mechanical system. Architectural mechanics is discussion and research building structure and component in load and other factors affecting the working condition of, also is the building of intensity, stiffness and stability. In load, bear load and load of structure and component can cause the surrounding objects in their function, and the object itself by the load effect and deformation, and there is the possibility of damage, but the structure itself has certain resistance to deformation and destruction of competence, and the bearing capacity of the structure size is and component of materials, cross section, and the structural properties of geometry size, working conditions and structure circumstance relevant. While these relationships can be improved by mechanics formula solved through calculation.

Building materials in building and has a pivotal role. Building material is with human society productivity and science and technology

improves gradually developed. In ancient times, the human lives, the line USES is the rocks and

Trees. The 4th century BC, 12 ~ has created a tile and brick, humans are only useful synthetic materials made of housing. The 17th century had cast iron and ShouTie later, until the eighteenth century had Portland cement, just make later reinforced concrete engineering get vigorous development. Now all sorts of high-strength structural materials, new decoration materials and waterproof material development, criterion and 20th century since mid organic polymer materials in civil engineering are closely related to the widely application. In all materials, the most main and most popular is steel, concrete, lumber, masonry. In recent years, by using two kinds of material advantage, will make them together, the combination of structure was developed. Now, architecture, engineering quality fit and unfit quality usually adopted materials quality,

performance and using reasonable or not have direct connection, in meet the same technical indicators and quality requirements, under the

precondition of choice of different material is different, use method of engineering cost has direct impact.

In construction process, building construction is and architectural mechanics, building materials also important links. Construction is to the mind of the designer, intention and idea into realistic process, from the ancient hole JuChao place to now skyscrapers, from rural to urban country road elevated road all need through

reinforced concrete structure engineering, structural lifting project, waterproofing, decorate projects, each type of project has its own rules, all need according to different construction object and construction environment conditions using relevant construction technology, in work-site.whenever while, need and the relevant hydropower and other equipment composition of a whole, each project between reasonable organizing and coordination, better play investment benefit. Civil engineering construction in the benefit, while also issued by the state in strict accordance with the relevant construction technology standard, thus further enhance China's construction level to ensure construction quality, reduce the cost for the project.

Any building built on the surface of the earth all strata, building weight eventually to stratum, have to bear. Formation Support building the rocks were referred to as foundation, and the buildings on the ground and under the upper structure of self-respect and liable to load transfer to the foundation of components or component called foundation.

Foundation, and the foundation and the superstructure is a building of three inseparable part. According to the function is different, but in load, under the action of them are related to each other, is the

interaction of the whole. Foundation can be divided into natural

foundation and artificial foundation, basic according to the buried depth is divided into deep foundation and shallow foundation. , foundation and foundation is the guarantee of the quality of the buildings and normal use close button, where buildings foundation in building under loads of both must maintain overall stability and if the settlement of foundation produce in building scope permitted inside, and foundation itself should have sufficient strength, stiffness and durability, also consider repair methods and the necessary foundation soil retaining retaining water and relevant measures. [3]

As people living standard rise ceaselessly, the people to their place of building space has become not only from the number, and put forward higher requirement from quality are put car higher demands that the environment is beautiful, have certain comfort. This needs to decorate a building to be necessary. If architecture major engineering constitutes the skeleton of the building, then after adornment building has become the flesh-and-blood organism, final with rich, perfect appearance in people's in front, the best architecture should fully embody all sorts of adornment material related properties, with existing construction technology, the most effective gimmick, to achieve conception must express effect. Building outfit fix to consider the architectural space use requirement, protect the subject institutions from damage, give a person with beautifulenjoying, satisfy the requirements of fire

evacuation, decorative materials and scheme of rationality, construction technology and economic feasibility, etc. Housing construction

development and at the same time, like housing construction as affecting people life of roads, Bridges, tunnels has made great progress.

In general civil engineering is one of the oldest subjects, it has made great achievements, the future of the civil engineering will occupy in people's life more important position. The environment worsening population increase, people to fight for survival, to strive for a more comfortable living environment, and will pay more attention to civil engineering. In the near future, some major projects extimated to build, insert roller skyscrapers, across the ocean

Bridges, more convenient traffic would not dream. The development of science and technology, and the earth is deteriorating environment will be prompted civil engineering to aerospace and Marine development, provide mankind broader space of living. In recent years, engineering materials mainly is reinforced concrete, lumber and brick materials, in the future, the traditional materials will be improved, more suitable for some new building materials market, especially the chemistry materials will promote the construction of towards a higher point. Meanwhile, design method of precision, design work of automation, information and intelligent technology of introducing, will be people have a more

comfortable living environment. The word, and the development of the theory and new materials, the emergence of the application of computer, high-tech introduction to wait to will make civil engineering have a new leap.

This is a door needs calm and a great deal of patience and attentive professional. Because hundreds of thousands, even hundreds of thousands of lines to building each place structure clearly reflected. Without a gentle state of mind, do what thing just floating on the surface, to any a building structure, to be engaged in business and could not have had a clear, accurate and profound understanding of, the nature is no good. In this business, probably not burn the midnight oil of courage, not to reach the goal of spirit not to give up, will only be companies eliminated.

This is a responsible and caring industry. Should have a single responsible heart - I one's life in my hand, thousands of life in my hand. Since the civil, should choose dependably shoulder the responsibility.

Finally, this is a constant pursuit of perfect industry. Pyramid, spectacular now: The Great Wall, the majestic... But if no generations of the pursuit of today, we may also use the sort of the oldest way to build this same architecture. Design a building structure is numerous, but this is all experienced centuries of clarification, through

continuous accumulation, keep improving, innovation obtained. And such pursuit, not confined in the past. Just think, if the design of a building can be like calculation one plus one equals two as simple and easy to grasp, that was not for what? Therefore, a civil engineer is in constant of in formation. One of the most simple structure, the least cost, the biggest function. Choose civil, choosing a steadfast diligence, innovation, pursuit of perfect path.

Reference:

[1] LuoFuWu editor. Civil engineering (professional). Introduction to wuhan. Wuhan university of technology press. 2007

[2] WangFuChuan, palace rice expensive editor. Construction

engineering materials. Beijing. Science and technology literature press. 2002

[3] jiang see whales, zhiming editor. Civil engineering introduction of higher education press. Beijing.. 1992

土木工程概论 [译文]

摘要:土木工程是个庞大的学科,但最主要的是建筑,建筑无论是在中国还是在国外,都有着悠久的历史,长期的发展历程。整个世界每天都在改变,而建筑也随科学的进步而发展。力学的发现,材料的更新,不断有更多的科学技术引入建筑中。以前只求一间有瓦盖顶的房屋,现在追求舒适,不同的思想,不同的科学,推动了土木工程的发展,使其更加完美。

[关键词]:土木工程;建筑;力学;材料。

土木工程是建造各种工程的统称。它的原意是与“军事工程”相对应的。在英语中,历史上土木工程、机械工程、电气工程、化工工程都属于Civil

Engineering,因为它们都具有民用性。后来,随着工程科学技术的发展,机械、电气、化工都已逐渐形成独立的科学,Civil Engineering就成为土木工程的专门名词。至今,在英语中,Civil Engineering还包括水利工程、港口工程;而在我国,水利工程和港口工程也成为与土木工程十分密切的相对独立分支。土木工程既指建设的对象,即建造在地上,地下,水中的工程设施,也指应用的材料设备和进行的勘测,设计施工,保养,维修等专业技术。

土木工程是一种与人们的衣、食、住、行有着密切关系的工程。其中与“住”的关系是直接的。因为,要解决“住”的问题必须建造各种类型的建筑物。而解决“行、食衣”的问题既有直接的一面,也有间接的一面。要“行”,必须建造铁路、道路、桥梁;要“食”,必须打井取水、兴修水利、进行农田灌溉、城市供水排水等,这是直接关系。而间接关系则不论做什么,制造汽车、轮船也好,纺纱、织布、制衣也好,乃至生产钢铁、发射卫星、开展科学研究活动都离不开建造各种建筑物、构筑物和修建各种工程设施。

土木工程随着人类社会的进步而发展,至今已经演变成为大型综合性的学科,它已经出许多分支,如:建筑工程,铁路工程,道路工程,桥梁工程,特种工程结构,给水排水工程,港口工程,水利工程,环境工程等学科。[1]

土木工程作为一个重要的基础学科,有其重要的属性:综合性,社会性,实践性,统一性。土木工程为国民经济的发展和人民生活的改善提供了重要 的物质技术基础,对众多产业的振兴发挥了促进作用,工程建设是形成固定资产的基本生产过程,因此,建筑业和房地产成为许多国家和地区的经济支柱之一。 建筑工程就是兴建房屋规划,勘测,设计,施工的总称。目的是为人类的生产和生活提供场所。

房屋好比一个人,它的规划就像人生活的环境,是由规划师负责的;它的布局和艺术处理相应于人的体形、容貌、气质,是由建筑师负责的;它的结构好比人的骨骼和寿命,是由结构工程师负责的;它的给排水、供热通风和电气等设施就如人的器官、神经,是由设备工程师负责的。也像自然界完好地塑造人一样,在城市我地区规划基础上建造房屋,是建设单位,勘察单位、设计单位的各种设计工程师和施工单位全面协调合作的过程。

结构说穿了,不过就是受力体的反力与内部应力如何与外力达到平衡。建筑首先要解决,也是必须要解决的问题就是受力的问题。我们把解决 这个问题的学科称为建筑力学。建筑力学有可以分为:静力学,材料力学和结构力学三大力学体系。建筑力学是讨论和研究建筑结构及构件在荷载和其他因素影响的 工作状况,也就是建筑的强度,刚度,稳定性。在载荷作用下,承受载荷和传递载荷的建筑结构和构件会引起周围的物体对它们的作用,同时物件本身受载荷作用而 产生变形,并且存在着被破坏的可能性,但是结构本身就具有一定的抵抗变形和破坏的能力,而结构的承载能力的大小是与构件的材料,截面的几何尺寸,受力性质,工作条件和构造情况有关。而这些关系都可以由力学关系式通过计算而得以解决。

建筑材料在建筑中也有着举足轻重的作用。建筑材料是随着人类社会生产力和科学技术的提高而逐步发展起来的。远古时代,人类的住、行采用的是石块和 树木。公元前12~4世纪先后创制了瓦和砖,人类才有用人造材料做成的住房。17世纪有了生铁和熟铁以后,直到18世纪有了波特兰水泥,才使后来的钢筋混

凝土工程得到蓬勃发展。如今各种高强度结构材料、新型装饰材料和防水材料的开发,则和20世纪中期以来高分子有机材料在土木工程中的广泛应用密切相关。在所有材料中,最为主要和最为大众的是钢材、混凝土、木材、砌体。近年来,采用两种材料的优点,将它们组合在一起,做成的组合结构得到很快发展。现在的建筑中,工程质量的优劣通常与所采用材料的优劣,性能及使用的合理与否有直接的联系,在满足相同技术指标和质量要求的前提下,选择不同的材料不同的使用方法,都对工程的造价有直接的影响。[2]

在建筑过程中,建筑工程施工是和与建筑力学,建筑材料同样重要的一个环节。建筑施工是将设计者的思想,意图及构思转化为现实的过程,从古代的穴居巢处到现在的摩天大楼,从农村的乡间小道到城市的高架道路都需要通过“施工”的手段来实现。一个工程的施工包括许多工种工程,诸如土石方工程,深基坑支护工程,基础工程,钢筋混凝土结构工程,结构吊装工程,防水工程,装饰工程等,各个工种工程都有自己的规律,都需要根据不同的施工对象及施工环境条件采用相应的施工技术,在土建施工的同时,需要与有关的水电及其它设备组成一个整体,各工程之间合理的组织与协调,更好的发挥投资的效益。土木工程施工在发挥效益的同时,还要严格按照国家颁发的有关施工技术规范,从而进一步提高我国的施工水平,保证施工质量,降低工程成本。

任何建筑无不修建在地球表面的地层上,建筑的重量最后都会传给地层,有地层来承受。支撑建筑的地层被统称为地基,建筑物在地面以下并将上部 结构的自重与所承担的载荷传递到地基上的构件或部分构件称为基础。地基,基础和上部结构是建筑物的三个不可分割的部分。三者的功能不同,但在载荷的作用下, 它们彼此相关,是共同作用的整体。地基可分为天然地基和人工地基,基础根据埋深分为深基础和浅基础。,基础和地基的质量是保证建筑物的安全和正常使用的关 键所在,建筑物的地基在建筑物的载荷作用下既要保持整体的稳定性又要是地基产生的沉降在建筑物许可范围内,而地基本身应有足够的强度,刚度和耐久性,同时还要考虑修基础的方法和必要的挡土挡水及相关措施。 [3]

随着人们生活的水平的不断提高,人们对自己所处的建筑空间已经不仅仅单纯从数量上提出更高的要求,而且从质量上也提车了更高的要求,要求环境的美观,有一定的舒适度。这就需要对建筑进行必要的装修。如果说建筑主体工程构成了建筑的骨架,那么装饰后的建筑则成了有血有肉的有机体,最终以丰富的,完善的面貌出现在人们的面前,最佳的建筑应该充分体现各种装饰材料的有关特性,结合现有的施工技术,最有效的手法,来达到构思所要表达的效果。建筑装 修要考虑建筑空间的使用要求,保护主体机构免受损害,给人以美的享受,满足消防疏散的要求,装饰材料和方案的合理性,施工技术和经济的可行性等。房屋建筑发展的同时,像房屋建筑一样影响着人们生活的道路,桥梁,隧道等也取得了长足的发展。

总的来说土木工程是一门古老的学科,它已经取得了巨大的成就,未来的土木工程将在人们的生活中占据更重要的地位。地球环境的日益恶化,人口的不断增加,人们为了争取生存,为了争取更舒适的生存环境,必将更加重视土木工程。在不久的将来,一些重大项目将会陆续兴建,插入云霄的摩天大楼,横跨大洋的 桥梁,更加方便的交通将不是梦想。科技的发展,以及地球不断恶化的环境必将促使土木工程向太空和海洋发展,为人类提供更广阔的生存空间。近年来,工程 材料主要是钢筋,混凝土,木材和砖材,在未来,传统材料将得到改观,一些全新的更加适合建筑的材料将问世,尤其是化学合成材料将推动建筑走向更高点。

同时,设计方法的精确化,设计工作的自动化,信息和智能化技术的全面引入,将会是人们有一个更加舒适的居住环境。一句话,理论的发展,新材料的出现,计算机的应用,高新技术的引入等都将使土木工程有一个新的飞跃。

这是一门需要心平气和和极大的耐心和细心的专业。因为成千上万,甚至几十万根线条要把建筑物的每一处结构清楚的反映出来。没有一个平和的心态,做什么事情都只是浮在表面上,对任何一幢建筑的结构,对要从事的事业便不可能有一个清晰、准确和深刻的认识,这自然是不行的。从事这个行业,可能没有挑灯夜战的勇气,没有不达目的不罢休的精神,只会被同行所淘汰。

这是一个需要责任感和爱心的行业。要有一颗负责的心——我一人之命在我手,千万人之命在我手。既然选择了土木,就应该踏踏实实的肩负起这个责任。

最后,这是一个不断追求完美的行业。金字塔,壮观吧;长城,雄伟吧......但如果没有一代又一代人的不断追求,今天的我们或许还用那种最古老的办法来造这同样的建筑。设计一幢建筑的结构是很繁,但是这都是经历了数个世纪的涤荡,经过不断的积累,不断改良,不断创新所得到的。而且这样的追求,绝不局限于过去。试想,如果设计一幢建筑能够像计算一加一等于二一样简单而易于掌握,那何了而不为呢?因此,土木工程师总是在不断的求索中。一个最简单的结构,最少的耗费,最大的功用。选择土木,选择了一条踏实勤奋,不断创新,追求完美的道路。

参考文献:

[1]罗福午主编.土木工程(专业)概论.武汉.武汉理工大学出版社.2007年

[2]王福川,宫米贵主编.建筑工程材料.北京.科学技术文献出版社.2002

[3]江见鲸,叶志明主编.土木工程概论.北京.高等教育出版社.1992年

范文十:2014年土木工程英语文献原文及中文翻译 投稿:史鉪鉫

课程名称:土木工程专业英语

设计题目: 土木工程概论

院 系:

专 业:

年 级:

姓 名:

指导教师: 唐秀军

西南交通大学峨眉校区

2011

5月12日

Civil engineering introduction papers[英语原文]

Abstract: the civil engineering is a huge discipline, but the main one is building, building whether in China or abroad, has a long history, long-term development process. The world is changing every day, but the building also along with the progress of science and development.

Mechanics findings, material of update, ever more scientific technology into the building. But before a room with a tile to cover the top of the house, now for comfort, different ideas, different scientific, promoted the development of civil engineering, making it more perfect.

[key words] : civil engineering; Architecture; Mechanics, Materials.

Civil engineering is build various projects collectively. It was meant to be and

scientific, to Engineering became Civil Engineering of specialized nouns. So far, in English, to Engineering include water conservancy project, port Engineering, While in our country, water conservancy projects and port projects also become very close and civil engineering relatively

independent branch. Civil engineering construction of object, both refers to that built on the ground, underground water engineering facilities, also refers to applied materials equipment and conduct of the

investigation, design and construction, maintenance, repair and other professional technology.

Civil engineering is a kind of with people's food, clothing, shelter and transportation has close relation of the project. Among them with

Civil engineering with the progress of human society and development, yet has evolved into large-scale comprehensive discipline, it has out many branch, such as: architectural engineering, the railway engineering, road engineering, bridge engineering, special engineering structure, water

and wastewater engineering, port engineering, hydraulic engineering, environment engineering disciplines. [1]

Civil engineering as an important basic disciplines, and has its important attributes of: integrated, sociality, practicality, unity. Civil engineering for the development of national economy and the

improvement of people's life provides an important material and technical basis, for many industrial invigoration played a role in promoting, engineering construction is the formation of a fixed asset basic

production process, therefore, construction and real estate become in many countries and regions, economic powerhouses.

Construction project is housing planning, survey, design,

construction of the floorboard. Purpose is for human life and production provide places.

Houses will be like a man, it's like a man's life planning environment is responsible by the planners, Its layout and artistic processing, corresponding to the body shape looks and temperament, is responsible by the architect, Its structure is like a person's bones and life expectancy, the structural engineer is responsible, Its water, heating ventilation and electrical facilities such as the human organ and the nerve, is by the equipment engineer is responsible for. Also like nature intact shaped like people, in the city I district planning based on build houses, and is the construction unit, reconnaissance unit, design unit of various design engineers and construction units comprehensive coordination and cooperation process.

After all, but is structural stress body reaction force and the internal stress and how external force balance. Building to tackle, also must solve the problem is mechanical problems. We have to solve the problem of discipline called architectural mechanics. Architectural mechanics have can be divided into: statics, material mechanics and structural mechanics three mechanical system. Architectural mechanics is discussion and research building structure and component in load and other factors affecting the working condition of, also is the building of intensity, stiffness and stability. In load, bear load and load of structure and component can cause the surrounding objects in their function, and the object itself by the load effect and deformation, and there is the possibility of damage, but the structure itself has certain resistance to deformation and destruction of competence, and the bearing capacity of the structure size is and component of materials, cross section, and the structural properties of geometry size, working conditions and structure circumstance relevant. While these relationships can be improved by mechanics formula solved through calculation.

Building materials in building and has a pivotal role. Building material is with human society productivity and science and technology

improves gradually developed. In ancient times, the human lives, the line USES is the rocks and

Trees. The 4th century BC, 12 ~ has created a tile and brick, humans are only useful synthetic materials made of housing. The 17th century had cast iron and ShouTie later, until the eighteenth century had Portland cement, just make later reinforced concrete engineering get vigorous development. Now all sorts of high-strength structural materials, new decoration materials and waterproof material development, criterion and 20th century since mid organic polymer materials in civil engineering are closely related to the widely application. In all materials, the most main and most popular is steel, concrete, lumber, masonry. In recent years, by using two kinds of material advantage, will make them together, the combination of structure was developed. Now, architecture, engineering quality fit and unfit quality usually adopted materials quality,

performance and using reasonable or not have direct connection, in meet the same technical indicators and quality requirements, under the

precondition of choice of different material is different, use method of engineering cost has direct impact.

In construction process, building construction is and architectural mechanics, building materials also important links. Construction is to the mind of the designer, intention and idea into realistic process, from the ancient hole JuChao place to now skyscrapers, from rural to urban country road elevated road all need through

reinforced concrete structure engineering, structural lifting project, waterproofing, decorate projects, each type of project has its own rules, all need according to different construction object and construction environment conditions using relevant construction technology, in work-site.whenever while, need and the relevant hydropower and other equipment composition of a whole, each project between reasonable organizing and coordination, better play investment benefit. Civil engineering construction in the benefit, while also issued by the state in strict accordance with the relevant construction technology standard, thus further enhance China's construction level to ensure construction quality, reduce the cost for the project.

Any building built on the surface of the earth all strata, building weight eventually to stratum, have to bear. Formation Support building the rocks were referred to as foundation, and the buildings on the ground and under the upper structure of self-respect and liable to load transfer to the foundation of components or component called foundation.

Foundation, and the foundation and the superstructure is a building of three inseparable part. According to the function is different, but in load, under the action of them are related to each other, is the

interaction of the whole. Foundation can be divided into natural

foundation and artificial foundation, basic according to the buried depth is divided into deep foundation and shallow foundation. , foundation and foundation is the guarantee of the quality of the buildings and normal use close button, where buildings foundation in building under loads of both must maintain overall stability and if the settlement of foundation produce in building scope permitted inside, and foundation itself should have sufficient strength, stiffness and durability, also consider repair methods and the necessary foundation soil retaining retaining water and relevant measures. [3]

As people living standard rise ceaselessly, the people to their place of building space has become not only from the number, and put forward higher requirement from quality are put car higher demands that the environment is beautiful, have certain comfort. This needs to decorate a building to be necessary. If architecture major engineering constitutes the skeleton of the building, then after adornment building has become the flesh-and-blood organism, final with rich, perfect appearance in people's in front, the best architecture should fully embody all sorts of adornment material related properties, with existing construction technology, the most effective gimmick, to achieve conception must express effect. Building outfit fix to consider the architectural space use requirement, protect the subject institutions from damage, give a person with beautifulenjoying, satisfy the requirements of fire

evacuation, decorative materials and scheme of rationality, construction technology and economic feasibility, etc. Housing construction

development and at the same time, like housing construction as affecting people life of roads, Bridges, tunnels has made great progress.

In general civil engineering is one of the oldest subjects, it has made great achievements, the future of the civil engineering will occupy in people's life more important position. The environment worsening population increase, people to fight for survival, to strive for a more comfortable living environment, and will pay more attention to civil engineering. In the near future, some major projects extimated to build, insert roller skyscrapers, across the ocean

Bridges, more convenient traffic would not dream. The development of science and technology, and the earth is deteriorating environment will be prompted civil engineering to aerospace and Marine development, provide mankind broader space of living. In recent years, engineering materials mainly is reinforced concrete, lumber and brick materials, in the future, the traditional materials will be improved, more suitable for some new building materials market, especially the chemistry materials will promote the construction of towards a higher point. Meanwhile, design method of precision, design work of automation, information and intelligent technology of introducing, will be people have a more

comfortable living environment. The word, and the development of the theory and new materials, the emergence of the application of computer, high-tech introduction to wait to will make civil engineering have a new leap.

This is a door needs calm and a great deal of patience and attentive professional. Because hundreds of thousands, even hundreds of thousands of lines to building each place structure clearly reflected. Without a gentle state of mind, do what thing just floating on the surface, to any a building structure, to be engaged in business and could not have had a clear, accurate and profound understanding of, the nature is no good. In this business, probably not burn the midnight oil of courage, not to reach the goal of spirit not to give up, will only be companies eliminated.

This is a responsible and caring industry. Should have a single responsible heart - I one's life in my hand, thousands of life in my hand. Since the civil, should choose dependably shoulder the responsibility.

Finally, this is a constant pursuit of perfect industry. Pyramid, spectacular now: The Great Wall, the majestic... But if no generations of the pursuit of today, we may also use the sort of the oldest way to build this same architecture. Design a building structure is numerous, but this is all experienced centuries of clarification, through

continuous accumulation, keep improving, innovation obtained. And such pursuit, not confined in the past. Just think, if the design of a building can be like calculation one plus one equals two as simple and easy to grasp, that was not for what? Therefore, a civil engineer is in constant of in formation. One of the most simple structure, the least cost, the biggest function. Choose civil, choosing a steadfast diligence, innovation, pursuit of perfect path.

Reference:

[1] LuoFuWu editor. Civil engineering (professional). Introduction to wuhan. Wuhan university of technology press. 2007

[2] WangFuChuan, palace rice expensive editor. Construction

engineering materials. Beijing. Science and technology literature press. 2002

[3] jiang see whales, zhiming editor. Civil engineering introduction of higher education press. Beijing.. 1992

土木工程概论 [译文]

摘要:土木工程是个庞大的学科,但最主要的是建筑,建筑无论是在中国还是在国外,都有着悠久的历史,长期的发展历程。整个世界每天都在改变,而建筑也随科学的进步而发展。力学的发现,材料的更新,不断有更多的科学技术引入建筑中。以前只求一间有瓦盖顶的房屋,现在追求舒适,不同的思想,不同的科学,推动了土木工程的发展,使其更加完美。

[关键词]:土木工程;建筑;力学;材料。

土木工程是建造各种工程的统称。它的原意是与“军事工程”相对应的。在英语中,历史上土木工程、机械工程、电气工程、化工工程都属于Civil Engineering,因为它们都具有民用性。后来,随着工程科学技术的发展,机械、电气、化工都已逐渐形成独立的科学,Civil Engineering就成为土木工程的专门名词。至今,在英语中,Civil Engineering还包括水利工程、港口工程;而在我国,水利工程和港口工程也成为与土木工程十分密切的相对独立分支。土木工程既指建设的对象,即建造在地上,地下,水中的工程设施,也指应用的材料设备和进行的勘测,设计施工,保养,维修等专业技术。

土木工程是一种与人们的衣、食、住、行有着密切关系的工程。其中与“住”的关系是直接的。因为,要解决“住”的问题必须建造各种类型的建筑物。而解决“行、食衣”的问题既有直接的一面,也有间接的一面。要“行”,必须建造铁路、道路、桥梁;要“食”,必须打井取水、兴修水利、进行农田灌溉、城市供水排水等,这是直接关系。而间接关系则不论做什么,制造汽车、轮船也好,纺纱、织布、制衣也好,乃至生产钢铁、发射卫星、开展科学研究活动都离不开建造各种建筑物、构筑物和修建各种工程设施。

土木工程随着人类社会的进步而发展,至今已经演变成为大型综合性的学科,它已经出许多分支,如:建筑工程,铁路工程,道路工程,桥梁工程,特种工程结构,给水排水工程,港口工程,水利工程,环境工程等学科。[1]

土木工程作为一个重要的基础学科,有其重要的属性:综合性,社会性,实践性,统一性。土木工程为国民经济的发展和人民生活的改善提供了重要 的物质技术基础,对众多产业的振兴发挥了促进作用,工程建设是形成固定资产的基本生产过程,因此,建筑业和房地产成为许多国家和地区的经济支柱之一。 建筑工程就是兴建房屋规划,勘测,设计,施工的总称。目的是为人类的生产和生活提供场所。

房屋好比一个人,它的规划就像人生活的环境,是由规划师负责的;它的布局和艺术处理相应于人的体形、容貌、气质,是由建筑师负责的;它的结构好比人的骨骼和寿命,是由结构工程师负责的;它的给排水、供热通风和电气等设施就如人的器官、神经,是由设备工程师负责的。也像自然界完好地塑造人一样,在城市我地区规划基础上建造房屋,是建设单位,勘察单位、设计单位的各种设计工程师和施工单位全面协调合作的过程。

结构说穿了,不过就是受力体的反力与内部应力如何与外力达到平衡。建筑首先要解决,也是必须要解决的问题就是受力的问题。我们把解决 这个问题的学科称为建筑力学。建筑力学有可以分为:静力学,材料力学和结构力学三大力学体系。建筑力学是讨论和研究建筑结构及构件在荷载和其他因素影响的 工作状况,也就是建筑的强度,刚度,稳定性。在载荷作用下,承受载荷和传递载荷的建筑结构和构件会引起周围的物体对它们的作用,同时物件本身受载荷作用而

产生变形,并且存在着被破坏的可能性,但是结构本身就具有一定的抵抗变形和破坏的能力,而结构的承载能力的大小是与构件的材料,截面的几何尺寸,受力性质,工作条件和构造情况有关。而这些关系都可以由力学关系式通过计算而得以解决。

建筑材料在建筑中也有着举足轻重的作用。建筑材料是随着人类社会生产力和科学技术的提高而逐步发展起来的。远古时代,人类的住、行采用的是石块和 树木。公元前12~4世纪先后创制了瓦和砖,人类才有用人造材料做成的住房。17世纪有了生铁和熟铁以后,直到18世纪有了波特兰水泥,才使后来的钢筋混凝土工程得到蓬勃发展。如今各种高强度结构材料、新型装饰材料和防水材料的开发,则和20世纪中期以来高分子有机材料在土木工程中的广泛应用密切相关。在所有材料中,最为主要和最为大众的是钢材、混凝土、木材、砌体。近年来,采用两种材料的优点,将它们组合在一起,做成的组合结构得到很快发展。现在的建筑中,工程质量的优劣通常与所采用材料的优劣,性能及使用的合理与否有直接的联系,在满足相同技术指标和质量要求的前提下,选择不同的材料不同的使用方法,都对工程的造价有直接的影响。[2]

在建筑过程中,建筑工程施工是和与建筑力学,建筑材料同样重要的一个环节。建筑施工是将设计者的思想,意图及构思转化为现实的过程,从古代的穴居巢处到现在的摩天大楼,从农村的乡间小道到城市的高架道路都需要通过“施工”的手段来实现。一个工程的施工包括许多工种工程,诸如土石方工程,深基坑支护工程,基础工程,钢筋混凝土结构工程,结构吊装工程,防水工程,装饰工程等,各个工种工程都有自己的规律,都需要根据不同的施工对象及施工环境条件采用相应的施工技术,在土建施工的同时,需要与有关的水电及其它设备组成一个整体,各工程之间合理的组织与协调,更好的发挥投资的效益。土木工程施工在发挥效益的同时,还要严格按照国家颁发的有关施工技术规范,从而进一步提高我国的施工水平,保证施工质量,降低工程成本。

任何建筑无不修建在地球表面的地层上,建筑的重量最后都会传给地层,有地层来承受。支撑建筑的地层被统称为地基,建筑物在地面以下并将上部 结构的自重与所承担的载荷传递到地基上的构件或部分构件称为基础。地基,基础和上部结构是建筑物的三个不可分割的部分。三者的功能不同,但在载荷的作用下, 它们彼此相关,是共同作用的整体。地基可分为天然地基和人工地基,基础根据埋深分为深基础和浅基础。,基础和地基的质量是保证建筑物的安全和正常使用的关 键所在,建筑物的地基在建筑物的载荷作用下既要保持整体的稳定性又要是地基产生的沉降在建筑物许可范围内,而地基本身应有足够的强度,刚度和耐久性,同时还要考虑修基础的方法和必要的挡土挡水及相关措施。 [3]

随着人们生活的水平的不断提高,人们对自己所处的建筑空间已经不仅仅单纯从数量上提出更高的要求,而且从质量上也提车了更高的要求,要求环境的美观,有一定的舒适度。这就需要对建筑进行必要的装修。如果说建筑主体工程构成了建筑的骨架,那么装饰后的建筑则成了有血有肉的有机体,最终以丰富的,完善的面貌出现在人们的面前,最佳的建筑应该充分体现各种装饰材料的有关特性,结合现有的施工技术,最有效的手法,来达到构思所要表达的效果。建筑装 修要考虑建筑空间的使用要求,保护主体机构免受损害,给人以美的享受,满足消防疏散的要求,装饰材料和方案的合理性,施工技术和经济的可行性等。房屋建筑发展的同时,像房屋建筑一样影响着人们生活的道路,桥梁,隧道等也取得了长足的发展。

总的来说土木工程是一门古老的学科,它已经取得了巨大的成就,未来的土木工程将在人们的生活中占据更重要的地位。地球环境的日益恶化,人口的不断增加,人们为了争取生存,为了争取更舒适的生存环境,必将更加重视土木工程。在不久的将来,一些重大项目将会陆续兴建,插入云霄的摩天大楼,横跨大洋的 桥梁,更加方便的交通将不是梦想。科技的发展,以及地球不断恶化的环境必将促使土木工程向太空和海洋发展,为人类提供更广阔的生存空间。近年来,工程 材料主要是钢筋,混凝土,木材和砖材,在未来,传统材料将得到改观,一些全新的更加适合建筑的材料将问世,尤其是化学合成材料将推动建筑走向更高点。同时,设计方法的精确化,设计工作的自动化,信息和智能化技术的全面引入,将会是人们有一个更加舒适的居住环境。一句话,理论的发展,新材料的出现,计算机的应用,高新技术的引入等都将使土木工程有一个新的飞跃。

这是一门需要心平气和和极大的耐心和细心的专业。因为成千上万,甚至几十万根线条要把建筑物的每一处结构清楚的反映出来。没有一个平和的心态,做什么事情都只是浮在表面上,对任何一幢建筑的结构,对要从事的事业便不可能有一个清晰、准确和深刻的认识,这自然是不行的。从事这个行业,可能没有挑灯夜战的勇气,没有不达目的不罢休的精神,只会被同行所淘汰。

这是一个需要责任感和爱心的行业。要有一颗负责的心——我一人之命在我手,千万人之命在我手。既然选择了土木,就应该踏踏实实的肩负起这个责任。

最后,这是一个不断追求完美的行业。金字塔,壮观吧;长城,雄伟吧......但如果没有一代又一代人的不断追求,今天的我们或许还用那种最古老的办法来造这同样的建筑。设计一幢建筑的结构是很繁,但是这都是经历了数个世纪的涤荡,经过不断的积累,不断改良,不断创新所得到的。而且这样的追求,绝不局限于过去。试想,如果设计一幢建筑能够像计算一加一等于二一样简单而易于掌握,那何了而不为呢?因此,土木工程师总是在不断的求索中。一个最简单的结构,最少的耗费,最大的功用。选择土木,选择了一条踏实勤奋,不断创新,追求完美的道路。

参考文献:

[1]罗福午主编.土木工程(专业)概论.武汉.武汉理工大学出版社.2007年

[2]王福川,宫米贵主编.建筑工程材料.北京.科学技术文献出版社.2002年

[3]江见鲸,叶志明主编.土木工程概论.北京.高等教育出版社.1992年

铁加热到塑性状态,使之从卷状转化为扁平状与圆状之间的某一状态的工艺,早在1800年

就得以发展了。随后,1819年角钢问世,1894年第一个工字钢被建造出来作为巴黎火车站的顶梁。此工字钢长17.7英尺)(5.4米)。

1851年英国的Joseph Paxtond为伦敦博览会建造了水晶宫。据说当时他已有这样的骨架结构构思:用比较细的铁梁作为玻璃幕墙的骨架。此建筑的风荷载抵抗力是由对角拉杆所提供的。在金属结构的发展历史中,有两个标志性事件:首先是从木桥发展而来的格构梁

站点地图